Chứng minh các phương trình sau có nghiệm duy nhất
3(cosx − 1) + 2sinx + 6x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt y = 3(cos x – 1) + 2sinx + 6
Hàm số xác định, liên tục và có đạo hàm tại mọi x ∈ R
Ta có: y( π ) = 0 và y' = -3sin x + 2cos x + 6 > 0, x ∈ R.
Hàm số đồng biến trên R và có một nghiệm x = π
Vậy phương trình đã cho có một nghiệm duy nhất.
1.
a, Phương trình có nghiệm khi:
\(\left(m+2\right)^2+m^2\ge4\)
\(\Leftrightarrow m^2+4m+4+m^2\ge4\)
\(\Leftrightarrow2m^2+4m\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge0\\m\le-2\end{matrix}\right.\)
b, Phương trình có nghiệm khi:
\(m^2+\left(m-1\right)^2\ge\left(2m+1\right)^2\)
\(\Leftrightarrow2m^2+6m\le0\)
\(\Leftrightarrow-3\le m\le0\)
2.
a, Phương trình vô nghiệm khi:
\(\left(2m-1\right)^2+\left(m-1\right)^2< \left(m-3\right)^2\)
\(\Leftrightarrow4m^2-4m+1+m^2-2m+1< m^2-6m+9\)
\(\Leftrightarrow4m^2-7< 0\)
\(\Leftrightarrow-\dfrac{\sqrt{7}}{2}< m< \dfrac{\sqrt{7}}{2}\)
b, \(2sinx+cosx=m\left(sinx-2cosx+3\right)\)
\(\Leftrightarrow\left(m-2\right)sinx-\left(2m+1\right)cosx=-3m\)
Phương trình vô nghiệm khi:
\(\left(m-2\right)^2+\left(2m+1\right)^2< 9m^2\)
\(\Leftrightarrow m^2-4m+4+4m^2+4m+1< 9m^2\)
\(\Leftrightarrow m^2-1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
Đáp án:B.
Với f(x) = x 3 + 5x + 6 thì vì f'(x) = 3 x 2 + 5 > 0, ∀ x ∈ R nên hàm số f(x) luôn đồng biến trên R. Mặt khác f(-1) = 0. Vậy phương trình f(x) = 0 có nghiệm duy nhất trên R.
a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.
Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).
Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.
b) Hàm số g(x) = cosx - x xác định trên R nên liên tục trên R.
Mặt khác, ta có g(0).g() = 1. (-) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; ).
Đặt \(f\left(x\right)=a.cos2x+b.sinx+cosx\)
Hàm \(f\left(x\right)\) xác định và liên tục trên R
\(f\left(\dfrac{\pi}{4}\right)=\dfrac{b\sqrt{2}}{2}+\dfrac{\sqrt{2}}{2}\)
\(f\left(\dfrac{5\pi}{4}\right)=-\dfrac{b\sqrt{2}}{2}-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow f\left(\dfrac{\pi}{4}\right).f\left(\dfrac{5\pi}{4}\right)=-\dfrac{1}{2}\left(b+1\right)^2\le0\) ; \(\forall a;b;c\)
\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc đoạn \(\left[\dfrac{\pi}{4};\dfrac{5\pi}{4}\right]\) hay pt đã cho luôn có nghiệm
Đặt y = 3(cos x – 1) + 2sinx + 6
Hàm số xác định, liên tục và có đạo hàm tại mọi x ∈ R
Ta có: y(π) = 0 và y' = -3sin x + 2cos x + 6 > 0, x ∈ R.
Hàm số đồng biến trên R và có một nghiệm x = π
Vậy phương trình đã cho có một nghiệm duy nhất.