K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

Đáp án C

Theo giả thiết, ta có

10 tháng 6 2017

Theo giả thuyêt ta có:

Chọn D

21 tháng 4 2016

Theo giả thiết ta có :

               \(u_1+u_2=u_1+\frac{1}{4}\left(u_1\right)=24\)

             \(\Rightarrow u_1+\frac{1}{4}u_1^2-24=0\)

             \(\Leftrightarrow u_1=-12\) V \(u_1=8\)

Vậy có 2 cấp số nhân tương ứng là : 8,16,32,128 hoặc -12,36,-108,-972

24 tháng 11 2017

31 tháng 7 2019

Đáp án C

Em có:  S = 1. q n − 1 q − 1 = q n − 1 q − 1 .

Vì cấp số nhân mới tạo thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu thành nghịch đảo của nó nên cấp số nhân mới sẽ có công bội là  1 q .

Gọi S' là tổng mới của cấp số nhân mới.

Em có:  S ' = 1 q n − 1 1 q − 1 = 1 − q n q n . 1 − q q = 1 − q n 1 − q . 1 q n − 1 = S q n − 1 .

Vậy tổng của cấp số nhân mới là:  S q n − 1 .

8 tháng 2 2021

De co cho thieu du kien la co bao nhieu so hang ko nhi ?Hay no la 1 csn lui vo han? Neu lui vo han thi lam duoc

\(\left\{{}\begin{matrix}q=4\\\dfrac{1}{u_1}+\dfrac{1}{u_2}+\dfrac{1}{u_3}+...+\dfrac{1}{u_n}+....=2\end{matrix}\right.\)

\(u_2=u_1.q;u_3=u_1.q^2;....;u_n=u_1.q^{n-1}\)

\(\Rightarrow\dfrac{1}{u_1}+\dfrac{1}{u_1.q}+\dfrac{1}{u_1.q^2}+...+\dfrac{1}{u_1.q^{n-1}}+....=2\)

\(\Leftrightarrow\dfrac{1}{u_1}\left(1+\dfrac{1}{q}+\dfrac{1}{q^2}+...+\dfrac{1}{q^{n-1}}+...\right)=2\)

Cần tính tổng trong ngoặc

\(\left\{{}\begin{matrix}u_1'=1\\q'=\dfrac{1}{q}\end{matrix}\right.\)

\(\Rightarrow S'_n=\dfrac{1}{1-q'}=\dfrac{1}{1-\dfrac{1}{4}}=\dfrac{4}{3}\)

\(\Rightarrow u_1=\dfrac{S'_n}{2}=\dfrac{4}{3.2}=\dfrac{2}{3}\)

8 tháng 2 2021

kq sai bn ạ

9 tháng 2 2021

không cho bao nhiêu số hạng hã?

9 tháng 2 2021

Cho cấp số nhân lùi vô hạn :33

19 tháng 1 2021

\(S_1=u_1=4-2=2\)

\(S_2=u_1+u_2=4^2-2.2=12\Rightarrow u_2=12-2=10\) 

\(\Rightarrow q=\dfrac{u_2}{u_1}=\dfrac{10}{2}=5\)