(Vẽ hình bài 1 và làm bài 2)
Bài 1: Cho đường tròn (O, 5cm), điểm M nằm bên ngoài đường tròn. Kẻ các đường tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Biết AMB = 60 độ
a) Chứng minh tam giác AMB là tam giác đều.
b) Tính chu vi tam giác AMB.
c) Tia AO cắt đường tròn ở C. Tứ giác BMOC là hình gì? Vì sao?
Bài 2: Cho nửa đường tròn (O, R), đường kính AB, hai tiếp tuyến Ax, By trên cùng một nửa mặt phẳng bờ AB. Trên tia Ax lấy điểm C, qua O kẻ đường thẳng vuông góc với OC cắt By ở D.
a) Tứ giác ABDC là hình gì? Vì sao?
b) C/m rằng đường tròn ngoại tiếp tam giác COD tiếp xúc với đường thẳng AB tại O.
c) Chứng minh CA.DB = R2
Bài 1:
Bài 2:
(Bạn vẽ hình thì vẽ nửa trên đường thôi nha, tại đề cho là nửa đường tròn tâm O)
a, Vì AC//BD (⊥AB) nên ABDC là hthang
Mà \(\widehat{CAB}=90^0\) nên ABDC là hthang vuông
b, Gọi I là trung điểm CD
Mà O là trung điểm AB nên OI là đtb hthang ABDC
Do đó OI//AC\(\Rightarrow\)OI⊥AB
Mà tam giác OCD vuông tại O nên OI là bán kính đg tròn ngoại tiếp tam giác OCD
Do đó AB là tiếp tuyến tại O của (I)
Vậy đường tròn ngoại tiếp tam giác COD tiếp xúc với đường thẳng AB tại O.
c, Kẻ OH⊥CD
Vì \(\widehat{AOC}=\widehat{IOD}\) (cùng phụ \(\widehat{COI}\)), \(\widehat{IOD}=\widehat{IDO}\left(IO=ID=\dfrac{1}{2}CD\right)\) nên \(\widehat{AOC}=\widehat{IDO}\Rightarrow90^0-\widehat{AOC}=90^0-\widehat{IDO}\Rightarrow\widehat{ACO}=\widehat{HCO}\)
Vì \(\left\{{}\begin{matrix}\widehat{ACO}=\widehat{HCO}\\CO.chung\\\widehat{CAO}=\widehat{CHO}=90^0\end{matrix}\right.\) nên \(\Delta AOC=\Delta HOC\Rightarrow OA=OH\Rightarrow H\in\left(O\right)\)
Mà CD⊥OH nên CD là tt tại H của (O)
Do đó \(CA\cdot DB=CH\cdot HD=OH^2=R^2\) (kết hợp HTL)