Gọi S là tập tất cả các số tự nhiên có bốn chữ số khác nhau. Chọn ngẫu nhiên một số từ tập S, tính xác suất để số được chọn lớn hơn số 6700.
A . 10 27
B . 12 33
C . 15 29
D . 21 46
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu: \(A_7^3-A_6^2=180\) số
Các trường hợp số chữ số lẻ nhiều hơn số chữ số chẵn là: 3 chữ số đều lẻ, 2 chữ số lẻ 1 số chữ chẵn
- 3 chữ số đều lẻ: \(A_3^3=3\) số
- 2 chữ số lẻ 1 chữ số chẵn: chọn 2 chữ số lẻ từ 3 chữ số lẻ có \(C_3^2=3\) cách
+ Nếu chữ số chẵn là 0 \(\Rightarrow\) \(3!-2!=4\) cách hoán vị 3 chữ số
+ Nếu chữ số chẵn khác 0 \(\Rightarrow\) có 3 cách chọn chữ số chẵn và \(3!\) cách hoán vị các chữ số
\(\Rightarrow3+3.\left(4+3.3!\right)=69\) số
Xác suất: \(P=\dfrac{69}{180}=\dfrac{23}{60}\)
Không gian mẫu: \(A_6^3=120\)
Gọi số cần lập có dạng \(\overline{abc}\)
Số chia hết cho 5 \(\Rightarrow c=5\) (1 cách chọn)
Chọn và hoán vị cặp ab: \(A_5^2=20\) cách
\(\Rightarrow1.20=20\) số chia hết cho 5
Xác suất: \(P=\dfrac{20}{120}=\dfrac{1}{6}\)
Xét các số có 9 chữ số khác nhau
Có 9 cách chọn chữ số ở vị trí đầu tiện. Có A 9 8 cách chọn 8 chữ số tiếp theo
Do đó có 9. A 9 8 số có 9 chữ số khác nhau
Gọi A là biến cố: “ số được chọn có đúng bốn chữ số lẻ sao cho số 0 luôn đứng giữa hai chữ số lẻ”
Có C 5 4 cách chọn 4 chữ số lẻ. Đầu tiên la xếp vị trí cho chữ số 0, do chữ số 0 không thể đứng đầu và cuối nên có 7 cách xếp.
Tiếp theo ta có A 4 2 cách chọn và xếp hai chữ số lẻ đứng 2 bên chữ số 0.
Khi đó có 6! Cách xếp 6 chữ số còn lại vào 6 vị trí còn lại.
Chọn A
Gọi số tự nhiên có bốn chữ số thỏa mãn yêu cầu bài toán là
Số phần tử của không gian mẫu là
Gọi biến cố A ‘‘Số được chọn lớn hơn số 6700’’.
Ta các TH sau:
TH1: có 1 cách chọn.
có 3 cách chọn.
+ Các chữ số c,d được chọn từ 8 chữ số còn lại có sắp thứ tự và số cách chọn là A 8 2
Số cách để chọn ở trường hợp 1 là: 3. A 8 2
TH2 : có 3 cách chọn. Khi đó: b,c,d có A 9 3 cách chọn.
Số cách để chọn ở trường hợp 1 là: 3. A 9 3
Như vậy, ta được n(A) = 3. A 8 2 + 3. A 9 3 = 1680
Suy ra