K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Vậy giá trị nhỏ nhất và giá trị lớn nhất của hàm số đã cho là - 8 và – 2.

Đáp án A

18 tháng 10 2021

Chọn A.

Có \(-1\le sin2x\le1\) \(\Rightarrow-3\le3sin2x\le3\)

     \(\Rightarrow-3-5\le3sin2x-5\le3-5\)

     \(\Rightarrow-8\le y\le-2\)

Chọn D

NV
30 tháng 1 2022

\(f'\left(x\right)=3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(f\left(-1\right)=-2;f\left(0\right)=2;f\left(2\right)=-2\)

\(\Rightarrow M=2;m=-2\Rightarrow P=6\)

Cả 4 đáp án đều sai (kiểm tra lại đề bài, có đúng là \(f\left(x\right)=x^3-3x^2+2\) hay không?)

18 tháng 10 2021

sinx nằm trong khoảng (-1,1) vậy GTLN làD

29 tháng 7 2018

Đáp án: A.

Tập xác định: D = R \{3}

Giải sách bài tập Toán 12 | Giải sbt Toán 12 ∀x ∈ D.

Do đó f(x) nghịch biến trên (- ∞ ; 3) và (3; + ∞ ).

Ta thấy [0;2] ⊂ (- ∞ ;3). Vì vậy

max f(x) = f(0) = 1/3, min f(x) = f(2) = -3.

3 tháng 3 2018

Đáp án A.

y(1) = y(5) = 0y(3) = 2 nên giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn [1;5] lần lượt là 20

7 tháng 2 2018

15 tháng 7 2019

Đáp án: A.

Tập xác định: D = R \{3}

Giải sách bài tập Toán 12 | Giải sbt Toán 12  ∀ x ∈ D.

Do đó f(x) nghịch biến trên (- ∞ ; 3) và (3; + ∞ ).

Ta thấy [0;2] ⊂ (- ∞ ;3). Vì vậy

max f(x) = f(0) = 1/3, min f(x) = f(2) = -3.

19 tháng 12 2020

\(\left[1;-4\right]??\)