Cho khối hộp chữ nhật ABCD.A'B'C'D'. Gọi M là trung điểm của BB'. Mặt phẳng (MDC') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A'. Gọi V 1 , V 2 lần lượt là thể tích hai khối đa diện chứa C và A'. Tính V 1 V 2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chuẩn hóa hình hộp đã cho là hình lập phương cạnh a.
Dựng M K / / A B ' / / C ' D
Khi đó thiết diện là tứ giác
Ta có: V 1 = 1 3 h S 1 + S 1 S 2 + S 2
Trong đó h = H B = a ' S 1 = S B M K = a 2 8 ; S 2 = S C ' D C = a 2 2
Do đó V 1 = 7 24 a 3 ⇒ V 2 = a 3 − V 1 = 17 24 a 3
Vậy V 1 V 2 = 7 17
Đáp án B
Chọn D
+) Gọi
Ta có M là trung điểm của AB
=> M là trung điểm EB'
=> N là trung điểm của ED' và AD
+) Ta có
Giả sử (AEF) cắt CC’ tại I. Khi đó ta có AE// FI, AF // EI nên tứ giác AEIF là hình bình hành. Trên cạnh CC’ lấy điểm J sao cho CJ = DF. Vì CJ song song và bằng DF nên JF song song và bằng CD. Do đó tứ giác CDFJ là hình chữ nhật. Từ đó suy ra FJ song song và bằng AB. Do đó AF song song và bằng BJ. Vì AF cũng song song và bằng EI nên BJ song song và bằng EI.
Từ đó suy ra IJ = EB = DF = JC = c/3
Ta có
Nên V H = V A . BCIE + V A . DCIF
Vì thể tích khối hộp chữ nhật ABCD.A’B’C’D’ bằng abc nên
Từ đó suy ra
Phương pháp:
- Dựng thiết diện cắt bởi (AB 'M) với hình hộp.
- Sử dụng phương pháp cộng trừ thể tích khối đa diện suy ra các tỉ số thể tích.
Cách giải:
Dựng thiết diện cắt bởi (AB 'M) với hình hộp như hình vẽ.
Ta có:
Đặt thể tích
Mà
Lại có
Đáp án A
Đáp án C
Ta thấy rằng mặt phẳng đi qua tâm của hình hộp I, nên do đó nó chia hình thành 2 hình có thể tích bằng nhau. Tức là V 1 V 2 = 1
Phương pháp:
- Dựng mặt phẳng chứa B'G và song song với C'D.
- Xác định khối đa diện và tính thể tích bằng cách cộng trừ thể tích các khối đa diện đơn giản.
Cách giải: