Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB đều, góc giữa (SCD) và (ABCD) bằng 60 0 . Gọi M là trung điểm của cạnh AB. Biết hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính theo a khoảng cách giữa hai đường thẳng SM và AC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án D
Ta có: HD là hình chiếu của SD lên mặt phẳng (ABCD).
Góc giữa SD và mặt phẳng (ABCD) là góc S D H ^ = 60 °
Kẻ HK ⊥ CD suy ra
Góc giữa hai mặt phẳng (SCD) và (ABCD) là góc S K H ^ = α
Ta có:
Mặt khác: HK//AD
Vậy:
Đáp án D
Gọi I ∈ C D sao cho H I / / A D .
Ta có H I A D = C H C A ⇔ H I = A D . C H C A = 2 a . 3 4 = 3 a 2 .
Và H D = D O 2 + H O 2 = D O 2 + D O 2 4 = D O 5 2 .
Mà 2 D O 2 = 4 a 2 ⇒ D O = a 2
⇒ H D = a 2 . 5 2 = a 10 2 ⇒ S H = H D . tan 60 ∘ = a 30 2 .
Vậy α = S I H ^ ⇒ tan α = S H H I = a 30 2 3 a 2 = 30 2 .
Đáp án A