K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

5 tháng 1 2020

Đáp án A

7 tháng 2 2017

Đáp án A

22 tháng 3 2016

1, Để \(\frac{n+5}{n}\)là số nguyên<=>n+5 chia hết cho n<=>n chia hết cho n và 5 chia hết cho n<=>n thuộc ước của 5={-5;-1;1;5}<=> n=-5;-1;1;5

2,a:5 dư 1<=> a-1 chia hết cho 5 <=> a-1+45 chia hết cho 5 <=> a+44 chia hết cho5

  a:7 dư 5 <=> a-5 chia hết cho 7 <=> a-5 +49 chia hết cho 7 <=> a+44 chia hết cho 7

=> a+44 thuộc BC(5;7)

<=> Ta có: 5=5

                 7=7

<=>BCNN(5;7)=5.7=35

<=>a+44=BC(5;7)=B(35)={70;105;140;175;....}

<=>a={26;61;96;131;.........}

3,    gọi số cần tìm là x

<=> x=26.32=576

22 tháng 3 2016

1) có 4 số tự nhiên thỏa mãn

7 tháng 10 2021

Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅

AH
Akai Haruma
Giáo viên
7 tháng 4 2023

Lời giải:

$1440=2^5.3^2.5$

Để $k=n!\vdots 1440$ thì $n!\vdots 2^5$; $n!\vdots 3^2; n!\vdots 5$

Để $n!\vdots 3^2; 5$ thì $n\geq 6(1)$

Để $n!\vdots 2^5$. Để ý $2=2^1, 4=2^2, 6=2.3, 8=2^3$. Để $n!\vdots 2^5$ thì $n\geq 8(2)$

Từ $(1); (2)$ suy ra $n\geq 8$. Giá tri nhỏ nhất của $n$ có thể là $8$

2 tháng 4 2021

program hoc24;

n: string[20];

k,i,t,d,d1: byte;

code: integer;

begin

write('Nhap so K: '); readln(k);

write('Nhap so nguyen N: '); readln(n);

d:=0; d1:=0;

 for i:=1 to k do

begin

val(n[i],t,code);

if t mod 2=0 then d:=d+1 else d1:=d1+1;

end;

writeln('Co ',d,' chu so chan');

write('Co ',d1,' chu so le');

readln

end.

26 tháng 1 2021

\(^∗\)Xét \(n=2011\)thì \(S\left(2011\right)=2011^2-2011.2011+2010=2010\)(vô lí)

\(^∗\)Xét \(n>2011\)thì \(n-2011>0\)do đó \(S\left(n\right)=n\left(n-2011\right)+2010>n\left(n-2011\right)>n\)(vô lí do \(S\left(n\right)\le n\))

* Xét \(1\le n\le2010\)thì \(\left(n-1\right)\left(n-2010\right)\le0\Leftrightarrow n^2-2011n+2010\le0\)hay \(S\left(n\right)\le0\)(vô lí do \(S\left(n\right)>0\))

Vậy không tồn tại số nguyên dương n thỏa mãn đề bài

9 tháng 2 2016

Ta có :n-12 /n+12 = n+12-24 /n+12 = n+12 /n+12 - 24/ n+12.Vì n+12 chia hết cho n+12 nên để n-12 chia hết cho n+12 thì 24 phải chia hết cho n+12 

=>n+12 = -24;-12;-8;-6;-4;-3;-2;-1;1;2;3;4;6;8;12;24

=> n = -36;-24;-20;-18;-16;-15;-14;-13;-11;-10;-9;-8;-6;-4;0;12

Vậy có tất cả 16 số nguyên n thỏa mãn n-12 chia hết cho n+12

9 tháng 2 2016

có 16 số nguyên n , nhiều nên mình ko viết được

tich ủng hộ mình nhé

29 tháng 6 2023

Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.

2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m

Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11

Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.

Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.

Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …

Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.

  
29 tháng 6 2023

nhưng mà đề bài là 2n+11 chia hết cho 2k-1 chứ không phải 2n+11 chia hết cho 2k-1.