Tìm \(x,y\in Z\): \(x^2+2y^2-2xy+2x-6y+1=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x^2+9y^2+4x-24y+17=0\)
\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)
\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)
Ta có:
\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(z^2+2zx+x^2\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)+z^2=0\)\(\Leftrightarrow\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2+\left(x+5\right)^2+\left(y+3\right)^2+z^2=0\)
Không tồn tại x,y,z thỏa mãn đề bài
\(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2z\left(x-y\right)+z+\left(x^2-8x+16\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\left(x-y-z\right)^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-z=0\\x-4=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=1\\x=4\\y=3\end{cases}}\)
Vậy \(x=4\), \(y=3\), \(z=1\)
Ta có x2 - 2xy + 2y2 -2x + 6y+5 =0
<=> (x2 - 2xy + y2) - (2x - 2y) + (y2 + 4y + 4) + 1 = 0
<=> [(x - y)2 - 2(x - y) + 1] + (y + 2)2 = 0
<=> (x - y - 1)2 + (y + 2)2 = 0
<=> \(\hept{\begin{cases}x-y-1=0\\2\:+y=0\end{cases}}\)
<=> (x; y) = (-1; -2)
x2 - 2xy + 2y2 + 2x - 6y + 4 = 0
<=> [ ( x2 - 2xy + y2 ) + 2( x - y ) + 1 ] + ( y2 - 4y + 4 ) - 1 = 0
<=> [ ( x - y )2 + 2( x - y ) + 1 ] + ( y - 2 )2 - 1 = 0
<=> ( x - y + 1 )2 + ( y - 2 )2 - 1 = 0
<=> ( x - y + 1 )2 + ( y - 2 )2 = 1
Nhận thấy rằng VT là tổng của hai bình phương
=> VP cũng phải là tổng của hai bình phương
Ta có : 1 = 12 + 02
= (-1)2 + 02
Ta xét 4 trường hợp sau :
1.\(\hept{\begin{cases}\left(x-y+1\right)^2=1^2\\\left(y-2\right)^2=0^2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
2. \(\hept{\begin{cases}\left(x-y+1\right)^2=\left(-1\right)^2\\\left(y-2\right)^2=0^2\end{cases}}\Rightarrow x=y=2\)
3. \(\hept{\begin{cases}\left(x-y+1\right)^2=0^2\\\left(y-2\right)^2=1^2\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)
4. \(\hept{\begin{cases}\left(x-y+1\right)^2=0^2\\\left(y-2\right)^2=\left(-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Vậy ( x ; y ) = { ( 0 ; 2 ) , ( 2 ; 2 ) , ( 2 ; 3 ) , ( 0 ; 1 ) }
\(x^2-2xy+y^2+2x-6y+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2-2y+2x+1\right)+\left(y^2-4y+4\right)=1\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=1\)
Mà \(x;y\in Z\); \(\left(x-y+1\right)^2\ge0;\left(y-2\right)^2\ge0\)
pt <=> \(\orbr{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-2\right)^2=1\end{cases}}\) hoặc \(\orbr{\begin{cases}\left(x-y+1\right)^2=1\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-y=-1\\y=3\end{cases}}\) hoặc \(\orbr{\begin{cases}x-y=0\\y=2\end{cases}}\)
<=> x = 2 ; y = 3 hoặc x = y = 2 ( tm x ; y thuộc Z )
Vậy các cặp số x ; y thỏa mãn pt trên là : ( 2 ; 3 ) ; ( 2 ; 2 )
2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0
(x2 + y2 + z2 + 2xy + 2xz + 2yz) + (x2 + 10x + 25) + (y2+ 6y + 9) = 0
( x + y + z)2 + ( x + 5)2 + (y + 3)2 = 0
( x + y + z)2 = 0 ;
( x + 5)2 = 0 ;
(y + 3)2 = 0
vậy x = - 5 ; y = -3; z = 8
Tìm x, y, z biết rằng: 2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0
Giải
2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0
(x2 + y2 + z2 + 2xy + 2xz + 2yz) + (x2 + 10x + 25) + (y2+ 6y + 9) = 0
( x + y + z)2 + ( x + 5)2 + (y + 3)2 = 0
( x + y + z)2 = 0 ; ( x + 5)2 = 0 ; (y + 3)2 = 0
x = - 5 ; y = -3; z = 8
Ta có: \(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)
\(\Leftrightarrow\left(x^2-8x+16\right)+\left(y^2-6y+9\right)+\left(x^2-2xy+y^2\right)-2\left(x-y\right)z+z^2=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(y-3\right)^2+\left[\left(x-y\right)^2-2\left(x-y\right)z+z^2\right]=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(y-3\right)^2+\left(x-y-z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left(y-3\right)^2=0\\\left(x-y-z\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)
Chỗ (x²-8x+16)
16 là ở đâu ra vậy bạn
Chỗ (y²-6y+9 )
9 là ở đâu ra nx v
\(\Leftrightarrow\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-4y+4\right)=4\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=4=2^2+0^2=0^2+2^2\)
\(\Rightarrow x;y\)