1+(1+2)+(1+2+3)+(1+2+3+4)+...+(1+2+3+4+...+2012)
1x2012+2x2012+3x2010+....+2012x1
tinh gia tri bieu thuc tren.(giai giup minh voi,dang voi)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay a = -1 , b=1 vào biểu thức A
=> A = 5.(-1)^3.1^8 = - 5
Thay a = -1 , b= 2 vào biểu thức B
=>B = -9.(-1)^4 . 2^2 = - 36
Ta có :
C = ax + ay + bx + by = a(x+y) + b(x+y) = (x+y)(a+b)
Thay a+b = - 3 , x+y = 17 vào biểu thức C
C = ( -3)(17) = -51
\(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}\)
=> 1 - \(\frac{1}{32}\)
= \(\frac{32}{32}-\frac{1}{32}\)
= \(\frac{31}{32}\)
=\(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}\)
=\(1-\left(\frac{1.16}{2.16}\right)-\left(\frac{1.8}{4.8}\right)-\left(\frac{1.4}{8.4}\right)\left(\frac{1.2}{16.2}\right)-\frac{1}{32}\)
=\(1-\frac{16}{32}-\frac{8}{32}-\frac{4}{32}-\frac{2}{32}-\frac{1}{32}\)
=\(1-\frac{1}{32}\)
=\(\frac{31}{32}\)
\(\frac{\left(\frac{3}{15}+\frac{1}{4}+\frac{7}{20}\right).\frac{17}{9}}{5\frac{1}{3}+\frac{2}{5}}=\frac{\left(\frac{4+5+7}{20}\right).\frac{17}{9}}{\frac{16}{3}+\frac{2}{5}}\)
= \(\frac{\frac{4.17}{5.9}}{\frac{86}{15}}=\frac{68}{45}:\frac{86}{15}=\frac{34}{129}\)
Tíc nhé! :")
1+2+1+2+3+1+2+3+4+1+2+3+4+5
=(1+2)x4+3x3+4x2+5
=3x4+9+8+5
=12+9+8+5
=34
a: \(P=\dfrac{a+3}{a}\cdot\dfrac{a^2-9-6a+18}{\left(a-3\right)\left(a+3\right)}\)
\(=\dfrac{\left(a-3\right)^2}{a\left(a-3\right)}=\dfrac{a-3}{a}\)
b: Để P=-2 thì -2a=a-3
=>-3a=-3
=>a=1
c: Để P nguyên thì a-3 chia hết cho a
=>-3 chia hết cho a
mà a<>0; a<>3; a<>-3
nên \(a\in\left\{1;-1\right\}\)
\(A=x^2+2xy+y^2-4x-4y+1\)
\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(A=3^2-4.3+1\)
\(A=-2\)
\(x^2+2xy+y^2-4x-4y+\)\(1\)
\(=\left(x^2+2xy+y^2\right)-\left(4x+4y\right)+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
Thay x+y = 1, ta có:
\(=3^2-4.3+1=-2\)