K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

20 tháng 12 2020

ai giup mik voi 

 

 

 

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy a MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2 và MN//AC

Để MNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD

10 tháng 10 2021

Xét tam giác ABC có:

M là trung điểm AB

N là trung điểm BC

=> MN là đường trung bình

=> MN//AC và \(MN=\dfrac{1}{2}AC\left(1\right)\)

Xét tam giác ADC có:

P là trung điểm DC

Q là trung điểm AD

=> PQ là đường trung bình

=> PQ//AC và \(PQ=\dfrac{1}{2}AC\left(2\right)\)

\(\left(1\right),\left(2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}PQ//MN\\PQ=MN\end{matrix}\right.\)

=> MNPQ là hình bình hành

Phần còn lại thì điểm I đâu?

20 tháng 9 2018

Giúp mình với nhá, mai mình phải nộp bài rồi!!!

11 tháng 8 2016

EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành. 
=> MP và EF cắt nhau tại trung điểm I. 
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I 
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành 

12 tháng 8 2016

bạn vẽ hình đc k 

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

P là trung điểm của CD

N là trung điểm của BC

Do đó: PN là đường trung bình của ΔABD

Suy ra: PN//BD và \(PN=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//PN và MQ=PN

hay MNPQ là hình bình hành

21 tháng 12 2016

Xét tứ giác ABD có : AQ=QD ;AM=MB

 suy ra MQ là đường trung bình của tam giác ABD 

vậy MQ= 1/2 BD và MQ  song song với BD*

Xét tam giác CDB có : PD=PC;NC=NB

suy ra NP là đường trung bình của tam giác CDB

vậy NP song song với BD và NP =1/2 BD**

từ *và ** suy ra MQ song song với MP

  MQ =MP

vậy tứ giác MNPQ là HBH

17 tháng 5 2018

nối 2 đường chéo: Q tđ AD , P tđ DC => QP đường trung bình tam giác ADC=> QP // và = AC (1)

A tđ AB,N tđ BC => MN đường trung bình tam giác ABC => MN//=1/2 AC(2)

1 và 2 => QP song song và bằng MN => tứ giác QMNP hình bình hành