Cho tam giác ABC có ba cạnh a,b,c và có chu vi 2p, diện tích S thỏa \(\frac{\sqrt{3}}{36}\)(a+b+c)^2. Hỏi tam giác ABC là tam giác gì ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tỉ lệ ta có: \(\begin{cases}\frac{a}{b}=\frac{3}{4}\\\frac{a}{c}=\frac{3}{5}\\a+b+c=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=\frac{4}{3}a\\c=\frac{5}{3}a\\a+b+c=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=\frac{4}{3}a\\c=\frac{5}{3}a\\a+\frac{4}{3}a+\frac{5}{3}a=24\end{cases}\) \(\Leftrightarrow\begin{cases}b=8\\c=10\\a=6\end{cases}\)
b. Tam giác ABC là tam giác vuông . vì : \(8^2+6^2=10^2\)( đúng với pytago)
a) Theo bài ra ta có:
a/b=3/4 ; b/c=4/5 ; a/c=3/5
=> a/3 = b/4 =c/5 và a+b+c=24
Áp dụng tchat dayc tỉ số bằng nhau ta có
a/3=b/4=c/5 =a+b+c/3+4+5=24/12=2
Vì a/3=2 =>a=6
Vì b/4 =2 => b=8
Vì c/5 =2 => c=10
Vậy...........
.
tớ trình bày ngắn gọn nhé, vì dù sao olm cũng ko chọn
a) theo bài ra ta có:
a/3 = b/4 = c/5
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a/3 = b/4 = c/5 = (a + b + c) / 3 + 4 + 5 = 24 / 12 = 2
a/3 = 2 => a = 3 x 2 = 6
b/4 = 2 => b = 4 x 2 = 8
c/5 = 2 => x = 5 x 2 = 10
b) mk nghĩ tam giác ABC là tam giác nhọn
ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow a=2.3=6\left(cm\right)\)
\(\Rightarrow b=2.4=8\left(cm\right)\)
\(\Rightarrow c=2.5=10\left(cm\right)\)
Bài 1:
a: AB+AC=75-45=30(cm)
b: AB=(30+4):2=17(cm)
=>AC=13cm
\(S=17\cdot13=221\left(cm^2\right)\)
Bài 2:
a: BC=67-47=20(cm)
b: \(S=\dfrac{15\cdot20}{2}=15\cdot10=150\left(cm^2\right)\)
\(\cfrac{P}{P-a}=\cfrac{2P}{2P-2a}=\cfrac{2P}{a+b+b-2a}=\cfrac{2P}{-a+b+c}\)
Chứng minh tương tự => \(\cfrac{P}{P-b}=\cfrac{2P}{a-b+c} \); \(\cfrac{P}{P-c}=\cfrac{2P}{a+b-c}\)
=>VT=\(\cfrac{2P}{-a+b+c}+\cfrac{2P}{a-b+c}+\cfrac{2P}{a+b-c} \geq 2P\cfrac{(1+1+1)^2}{a+b +c}=9\)(Áp dụng bđt \(\cfrac{a^2}{x}+\cfrac{b^2}{y}+\cfrac{c^c}{z}\geq\cfrac{(a+b+c)^2}{x+y+z}\))