K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

A B C H D

31 tháng 3 2017

chia nhiều trường hợp quá

a) Xét ∆ ABC có : 

AH là đường cao đồng thời là trung tuyến 

=> ∆ABC cân tại A 

b) Vẽ E là trung điểm Kẻ CE 

Vì ∆ABC cân tại A 

=> AB = AC 

=> ABC = ACB 

Vì D là trung điểm AB

=> AD = DB 

Vì E là trung điểm AC 

=> AE = EC 

=> AE = EC = AD = DB 

Xét ∆ EBC và ∆ DCB ta có : 

BC chung 

CE = BD ( cmt)

ACB = ABC ( cmt)

=> ∆EBC = ∆DCB (c.g.c)

=> DCB = EBC ( tg ứng) 

Mà ABC = ACB 

=> ACD = ABE 

Vì D là trung điểm AB 

=> CD là trung tuyến AB 

=> CD là phân giác ACB 

Vì E là trung điểm AC 

=> BE là trung tuyến AB 

=> BE là phân giác ABC 

=> DCB = ACD 

=> ABE = EBC 

=> DCB = 180° - \(\frac{1}{2}\)ACB - \(\frac{1}{2}\)ABC 

Mà ACB = ABC = 30° 

=> DCB = 180° - \(\frac{60°}{4}\)= 15°

28 tháng 7 2019

bạn tự vẽ hình

a) tam giác vuông AHC có:

\(\widehat{C}=30^o\Rightarrow AH=\frac{1}{2}.AC\)(trong 1 t/g vuông, cạnh đối diện 1 góc 30 độ = 1 nửa cạnh huyền)

mà \(AH=\frac{1}{2}.BC\Rightarrow BC=AC\Rightarrow\Delta ABC\text{ cân tại }C\)

Vậy ...

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)