Biết rằng 2 x + 1 2 = log 2 14 - ( y - 2 ) y + 1 trong đó x>0. Tính giá trị của biểu thức P = x 2 + y 2 - x y + 1
A. 1
B. 2
C. 3
D. 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Rightarrow2^{x+\frac{1}{x}}\ge2^2=4\Rightarrow VT\ge4\)
Xét biểu thức dưới hàm logarit vế phải:
\(14-\left(y-2\right)\sqrt{y+1}=14-\left(y+1\right)\sqrt{y+1}+3\sqrt{y+1}\)
Đặt \(t=\sqrt{y+1}\ge0\) thì \(f\left(t\right)=14-t^3+3t\)
\(f'\left(t\right)=-3t^2+3=0\Rightarrow t=1\)
Dễ dạng nhận ra đây là điểm cực đại của hàm \(f\left(t\right)\)
\(\Rightarrow f\left(t\right)_{max}=f\left(1\right)=16\)
\(\Rightarrow VP\le log_216=4\le VT\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x=\frac{1}{x}\\t=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\\sqrt{y+1}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
\(\Rightarrow P=1+0+0+1=2\)
- Nếu đề là \(2^{x+\frac{1}{2}}\) thì \(VT>\sqrt{2}\) hoàn toàn ko thể đánh giá được P, vì miền giá trị của VT và VP trùng nhau 1 đoạn (x;y) rất dài cho nên sẽ có vô số giá trị P xảy ra nên mình khẳng định luôn là đề sai
Đề bài là \(2^{x+\frac{1}{2}}\) hả bạn? Với đề này thì ko giải được
\(D=x^2\left(x+y\right)-y^2\left(x+y\right)-x^2+y^2+2\left(x+y\right)+3\)
\(=x^2-y^2-x^2+y^2+2+3\)
\(=5\)
Đáp án B