Cho hàm số y = x 3 − 3 m x + 1 1 . Cho A(2;3) tìm m để đồ thị hàm số (1) có hai điểm cực trị B và C sao cho tam giác ABC cân tại A
A. m=1/2
B. m=-3/2
C. m=-1/2
D. m=3/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=x^2-2x+1=\left(x-1\right)^2\ge0\) ;\(\forall x\in R\)
\(\Rightarrow\) Hàm đồng biến trên R
Bài 19:
f(3)=2x3+3=9
f(-2)=-4+3=-1
Bài 20:
f(3)=15/3=5
f(5)=15/5=3
f(-2)=15/-2=-15/2
Bài 22:
Thay x=-2 vào y=3x, ta được:
y=3x(-2)=-6
Vậy: A(-2;6) thuộc đồ thị hàm số y=3x
Bài 19:
f(3)=2x3+3=9
f(-2)=-4+3=-1
Bài 20:
f(3)=15/3=5
f(5)=15/5=3
f(-2)=15/-2=-15/2
Bài 22:
Thay x=-2 vào y=3x, ta được:
y=3x(-2)=-6
Vậy: A(-2;6) thuộc đồ thị hàm số y=3x
\(f'\left(x\right)=0\) có đúng 1 nghiệm bội lẻ \(x=0\) nên hàm có 1 cực trị
Lời giải:
$f'(x)=0\Leftrightarrow x=0; x=1; x=3; x=2$.
BBT:
Từ BBT suy ra điểm cực tiêu là $x=0$
Đáp án A
Ta có y ' = 3 x 2 − 3 m = 3 x 2 − m
Hàm số có 2 điểm cực trị ⇔ y ' = 0 có 2 nghiệm phân biệt ⇒ m > 0 *
Khi đó B m ; 1 − 2 m m , C − m ; 1 + 2 m m ⇒ A B → = 2 − m ; 2 + 2 m m A B → = 2 + m ; 2 − 2 m m
Tam giác ABC cân tại A
⇒ A B = A C ⇔ 2 − m 2 + 2 + 2 m m 2 = 2 + m 2 + 2 − 2 m m 2
⇔ − 8 m + 16 m m = 0 ⇔ m 2 m − 1 = 0 ⇔ m = 0 m = 1 2
Kết hợp điều kiện * ⇒ m = 1 2