K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

Gọi E là điểm đối xứng của A qua J, suy ra AC = DE.

Khi đó AC+BD = DE+BD > BE hơn nữa BE=2IJ (do IJ là đường trung bình của tam giác ABE)

Vậy AC+BC > 2IJ

2 tháng 7 2016

Bạn học ở thầy Nam à ?

2 tháng 7 2016

sao hả bạn bạn biết thì trả lời giúp mình còn ko thì đừng hỏi vớ vẩn nhé

30 tháng 3 2019

*Xét  tam giác ABC có M; N  là trung điểm của AB, BC nên MN là đường trung bình của tam giác.

⇒ M N / / A C ;     M N = 1 2 A C   ( 1 )

* Xét  tam giác ADC có P; Q  là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.

⇒ P Q / / A C ;     P Q = 1 2 A C   ( 2 )

* Từ (1) (2)  suy  ra  PQ// MN;  PQ = MN.  Do đó, tứ giác MNPQ là hình bình hành.

* Mà O là giao điểm của hình bình hành MNPQ nên O là trung điểm MP

* Xét tam giác ABC có MI là đường trung bình nên:  M I / / B C ;    M I = 1 2 ​ B C   ( 3 )

* Xét tam giác BCD có PJ là đường trung bình của các tam giác nên:  P J / / B C ;    P J = 1 2 ​ B C   ( 4 )

Từ (3) ( 4) suy ra ;  tứ giác  MIPJ là hình bình hành. Mà O là trung điểm MP nên  điểm O là trung điểm của đoạn thẳng IJ. Từ đó ta có  O I →   =   - O J →

Đáp án D

23 tháng 1 2017

Đáp án C

8 tháng 10 2020

Bổ đề: Cho tứ giác lồi bất kì thì tổng hai cạnh đối bé hơn tổng hai đường chéo (dễ chứng minh bằng cách sử dụng bất đẳng thức tam giác) (**)

Gọi E là giao điểm của AB và CD. Có thể xảy ra hai khả năng: ^B ≥ ^C hoặc ^B ≤ ^C

Giả sử ^B ≥ ^C (không mất tính tổng quát)

Trên tia đối của tia JA lấy K sao cho JA = JK

Dễ dàng có AD = BK  (tứ giác ABKD có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành)

IJ là đường trung bình của ∆ACK nên CK = 2IJ

Áp dụng bổ đề (**) vào tứ giác BCKD, ta được: BD + CK < CD + BK 

Vậy BD + 2IJ < CD + AD (1)

Trong ∆ABC thì AC < AB + BC (2)

Cộng vế với vế (1) và (2), ta được: AC + BD + 2IJ < AB + BC + CD + DA

29 tháng 4 2018

Đáp án D