Cho tập hợp M gồm 15 điểm phân biêt. Số vecto khác 0 → , có điểm đầu và điểm cuối là các điểm thuộc M là
A. C 15 2
B. 15 2
C. A 15 2
D. A 15 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn điểm AA là điểm đầu thì chọn điểm cuối có 44 lựa chọn do →AA=⃗0AA→=0→
Tương tự chọn điểm BB là điểm đầu có 4 lựa chọn điểm cuối , chọn điểm CC là điểm đầu có 44 lựa chọn điểm cuối, chọn điểm DD là điểm đầu thì có 44 lựa chọn ở điểm cuối.
Vậy số vector khác vector không có điểm đầu và điểm cuối là các điểm đó là 4+4+4+4+4=204+4+4+4+4=20 vector.
Chọn điểm AA là điểm đầu thì chọn điểm cuối có 44 lựa chọn do →AA=⃗0AA→=0→
Tương tự chọn điểm B là điểm đầu có 4 lựa chọn điểm cuối , chọn điểm C là điểm đầu có 4 lựa chọn điểm cuối, chọn điểm D là điểm đầu thì có 44 lựa chọn ở điểm cuối.
Vậy số vector khác vector không có điểm đầu và điểm cuối là các điểm đó là 4+4+4+4+4=20 vector.
Số vecto tạo từ 2n điểm là: \(A_{2n}^2\)
Đa giác đều 2n đỉnh có n đường chéo, cứ 2 đường chéo cho ta 1 hình chữ nhật tương ứng, do đó số hình chữ nhật có đỉnh là đỉnh của đa giác đều là: \(C_n^2\)
\(\Rightarrow A_{2n}^2=9C_n^2\Leftrightarrow\dfrac{\left(2n\right)!}{\left(2n-2\right)!}=\dfrac{9.n!}{2!.\left(n-2\right)!}\)
\(\Leftrightarrow2n\left(2n-1\right)=\dfrac{9n\left(n-1\right)}{2}\)
\(\Leftrightarrow n=5\)
dạ em chưa hiểu tại sao số vecto tạo từ 2n điểm và số hình chữ nhật có đỉnh là đỉnh của đa giác đều lại ra được như kia vậy ạ :(((
Mỗi cặp sắp thứ tự gồm hai điểm (A; B) cho ta một vectơ có điểm đầu A và điểm cuối B và ngược lại.
Như vậy, mỗi vectơ có thể xem là một chỉnh hợp chập 2 của tập hợp 6 điểm đã cho.
Suy ra có A 6 2 = 30 cách.
Chọn đáp án D.
Nhận xét: học sinh có thể nhầm cho rằng mỗi tam giác là một chỉnh hợp chập 3 của 18, nên số tam giác là A183 (phương án A); hoặc suy luận một tam giác có 3 đỉnh nên 18 điểm cho ta 18/3 = 6 tam giác (phương án C); hoặc suy luận 18 điểm có 18! Cách và mỗi tam giác có 3 đỉnh nên số tam giác là 18!/3 cách (phương án D)
- Do
nên mỗi vecto là một chỉnh hợp chập hai của 18.
Vì vậy, số vecto là A182 (chọn đáp án là A)
Chọn C.