K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

Chọn đáp án C.

26 tháng 7 2019

ĐÁP ÁN: B

25 tháng 2 2020

\(VT=\sqrt{\left(\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}\right)^2}\)

\(\le\sqrt{3\left(x+y+z+3\right)}=\sqrt{\left[9-2\left(x+y+z\right)\right]+5\left(x+y+z\right)}\)

\(=\sqrt{\left[9-\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]+5\left(x+y+z\right)}\le\sqrt{5\left(x+y+z\right)}=VP\)

Đẳng thức xảy ra khi \(a=b=c=\frac{3}{2}\)

25 tháng 2 2020

Theo giả thiết \(2=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\Rightarrow x+y+z\ge\frac{9}{2}\)

\(\Rightarrow\frac{2}{3}\left(x+y+z\right)\ge3\)

\(VT=\sqrt{\left(\Sigma_{cyc}\frac{\sqrt{x+1}}{\sqrt{5\left(x+y+z\right)}}.\sqrt{5\left(x+y+z\right)}\right)^2}\le\sqrt{15\left(x+y+z\right)\left[\Sigma_{cyc}\frac{x+1}{5\left(x+y+z\right)}\right]}\)

\(=\sqrt{3\left(x+y+z+3\right)}\le\sqrt{3\left(x+y+z+\frac{2}{3}\left(x+y+z\right)\right)}=\sqrt{5\left(x+y+z\right)}=VP\)

3 tháng 1 2019

Ta có: \(\dfrac{1992x}{xy+1992x+1992}\)=

\(\dfrac{xyz.x}{xy+xyz.x+xyz}\) = \(\dfrac{xyz.x.z}{xy.z+xyz.x.z+xyz.z}\) = \(\dfrac{xz}{1+xz+z}\)

Ta có: \(\dfrac{y}{zy+y+1992}\)=\(\dfrac{y}{zy+y+xyz}\)=\(\dfrac{1}{z+1+xz}\)

=> \(\dfrac{1992x}{xy+1992x+1992}\)+\(\dfrac{y}{zy+y+1992}\)+\(\dfrac{z}{z+zx+1}\) = \(\dfrac{xz}{1+zx+z}\) +\(\dfrac{1}{z+zx+1}\) \(+\dfrac{z}{z+zx+1}\) =\(\dfrac{z+zx+1}{z+xz+1}\)

=1

21 tháng 5 2019

Đáp án A

z = − 1 + i − i 2 + i 3 − i 4 + i 5 − ... + i 99 − i 100 + i 101 = − 1 + i + i 2 − 1 + i + i 4 − 1 + i + .... + i 100 − 1 + i = − 1 + i 1 + i 2 + i 4 + ... + i 100 = − 1 + i 1 1 − i 2.51 1 − i 2 = − 1 + i .

18 tháng 5 2018

NV
20 tháng 4 2019

Theo Viet: \(\left\{{}\begin{matrix}z_1+z_2=2i\\z_1z_2=-1-2i\end{matrix}\right.\)

\(\Rightarrow z_1^3+z_2^3=\left(z_1+z_2\right)\left(z_1^2+z_2^2-z_1z_2\right)=\left(z_1+z_2\right)\left(\left(z_1+z_2\right)^2-3z_1z_1\right)\)

\(=2i\left[\left(2i\right)^2-3\left(-1-2i\right)\right]=2i\left(6i-1\right)=-12-2i\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Lời giải:

Áp dụng BĐT Cô - si:

\(P=ax^m+\frac{b}{x^n}=\frac{a}{n}x^m+\frac{a}{n}x^m+...+\frac{a}{n}x^m+\frac{b}{mx^n}+...+\frac{b}{mx^n}\)

\(=(m+n)\sqrt[m+n]{(\frac{a}{n})^n.x^{mn}.(\frac{b}{m})^m.\frac{1}{x^{mn}}}\)

\(=(m+n)\sqrt[m+n]{\frac{a^nb^m}{n^n.m^m}}\)

27 tháng 12 2019

Ta co:

\(P=\Sigma_{cyc}\frac{x}{x+1}=3-\Sigma_{cyc}\frac{1}{x+1}\le3-\frac{9}{x+y+z+3}=\frac{9}{4}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{3}\)

20 tháng 7 2019

Đáp án D.

Ta có:

log x + y = z log x 2 + y 2 = z + 1 ⇔ x + y = 10 z + x 2 + y 2 = 10 z + 1 = 10.10 z ⇒ x 2 + y 2 = 10 x + y

Khi đó:

x 3 + y 3 = a .10 3 z + b .10 2 z ⇔ x + y x 2 − x y + y 2 = a . 10 z 3 + b . 10 z 2 ⇔ x + y x 2 − x y + y 2 = a . x + y 3 + b . x + y 2 ⇔ x 2 − x y + y 2 = a . x + y 2 + b . x + y ⇔ x 2 − x y + y 2 = a . x 2 + 2 x y + y 2 + b 10 . x 2 + y 2 ⇔ x 2 + y 2 − x y = a + b 10 . x 2 + y 2 + 2 a . x y

Đồng nhất hệ số, ta được:

a + b 10 = 1 2 a = − 1 ⇒ a = − 1 2 b = 15 .

Vậy  a + b = 29 2 .