Cho f ( x ) = 2 x 3 + x − 2 v à g ( x ) = 3 x 2 + x + 2 .
Giải bất phương trình f′(x) > g′(x).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng quy tắc tổng hiệu đó
\(f\left(x\right)=\dfrac{\left(x^3+6x^2+3x^4\right)+\left(2x^3-x^2+3x^4\right)}{2}\)
Vậy \(f\left(x\right)=\dfrac{6x^4+3x^3+5x^2}{2}=3x^4+1,5x^3+2,5x^2\)
\(g\left(x\right)=\left(x^3+6x^2+3x^4\right)-f\left(x\right)\)
\(=\left(x^3+6x^2+3x^4\right)-\left(3x^4+1,5x^3+2,5x^2\right)\)
\(=x^3+6x^2+3x^4-3x^4-1,5x^3-2,5x^2\)
\(=\left(3x^4-3x^4\right)+\left(x^3-1,5x^3\right)+\left(6x^2-2,5x^2\right)\)
Vậy \(g\left(x\right)=-0,5x^3+3,5x^2\)
a: \(f\left(x\right)=-4x+132\)
\(g\left(x\right)=-x^2+4x+132\)
b: \(f\left(x\right)+g\left(x\right)=-x^2+264\)
\(f\left(x\right)-g\left(x\right)=-4x+132+x^2-4x-132\)
\(=x^2-8x\)
f(3)=g(1)
nên \(1+3\left(3a+1\right)+a^2=1-2a+a^2\)
\(\Leftrightarrow1+9a+3=1-2a\)
=>11a=-3
hay a=-3/11
có f(x)-g(x)=ax2 +2x - 3 - 2x2 +bx2 +2x - 5 ( đã phá ngoặc )
=> h(x)= ( a+b-2)x2 + 4x - 8 ( theo đề bài a+b=2)
=> h(x)=(2-2)x2 + 4x - 8x : x ( mình cho thêm x vào nhân với 8 và lại chia x để không có việc gì xảy ra )
=>h(x)= 0 + ( 4-8)x : x
=> h(x)= -4x:x = -4 . 1 = -4
vậy h(x) khác không hay h(x) không có nghiệm
f(x)=x^3-2x^2+3x+1
g(x)=x^3+x^2-5x+3
a: f(-1/3)=-1/27-2/9-1+1=-1/27-6/27=-7/27
g(-2)=-8+4+10+3=17-8=9
b: f(x)-g(x)=x^3-2x^2+3x+1-x^3-x^2+5x-3
=x^2+8x-2
f(x)+g(x)
=x^3-2x^2+3x+1+x^3+x^2-5x+3
=2x^3-x^2-2x+4
a)\(F\left(x\right)=2\left(x^4+x^3\right)+2x-4\left(x^2-x^3-1\right)+4\)
\(=2x^4+2x^3+2x-4x^2+4x^3+4+4\)
\(=2x^4+6x^3+2x-4x^2+2x+8\)
\(G\left(x\right)=5x^4-4\left(3+x^4\right)-2x^2+4x^3+2\left(x^3-x^2+x\right)\)
\(=5x^4-12-4x^4-2x^2+4x^3+2x^3-2x^2+2x\)
\(=x^4+6x^3-4x^2+2x-12\)
b) Tìm \(K\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(\dfrac{+\dfrac{F\left(x\right)=2x^4+6x^3-4x^2+2x+8}{G\left(x\right)=x^4+6x^3-4x^2+2x-12}}{K\left(x\right)=3x^4+12x^3-8x^2+4x-4}\)
Tìm \(H\left(x\right)=F\left(x\right)-G\left(x\right)\)
\(\dfrac{-\dfrac{F\left(x\right)=2x^4+6x^3-4x^2+2x+8}{G\left(x\right)=x^4+6x^3-4x^2+2x-12}}{H\left(x\right)=x^4+0-0+0+20}\)
(−∞; 0) ∪ (1; +∞).