K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

13 tháng 4 2018

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .  

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α  và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .

MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a . 

NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 . 

Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .

4 tháng 1 2019

27 tháng 3 2018

Đáp án D

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

=>(SAD) vuông góc (SCD)

b: (SCD) giao (ABCD)=CD

CD vuông góc (SAD)

=>CD vuông góc SD

CD vuông góc SD

AD vuông góc CD

mà SD thuộc (SCD) và AD thuộc (ABCD)

nên ((SCD);(ABCD))=(SD;AD)=góc SDA

tan SDA=SA/AD=căn 3/2

=>góc SDA=41 độ

31 tháng 1 2018

Đáp án B.

Hướng dẫn giải:Ta có

Suy ra tam giác SAD vuông cân tại A nên SA = AD =2a .

Trong hình thang ABCD , kẻ B H ⊥ A D ( H ∈ A D ) .

Do ABCD là hình thang cân nên A H = A D - B C 2 = a 2 .

Tam giác AHB ,có  B H = A B 2 - A H 2 = a 3 2

Diện tích S A B C D = 1 2 ( A D + B C ) . B H = 3 a 3 2 4  .

Vậy   V S . A B C D = 1 3 S A B C D . S A = a 3 3 2

15 tháng 7 2018

Đáp án C.

Kẻ C H ⊥ A B .

Bằng tính toán hình thang vuông thông thương ta có được: