“Chứng minh rằng 2 là số vô tỉ”. Một học sinh đã lập luận như sau:
Bước 1: Giả sử 2 là số hữu tỉ, thế thì tồn tại các số nguyên dương m,n sao cho 2 = m n (1)
Bước 2: Ta có thể giả định thêm m n là phân số tối giản
Từ đó 2 n 2 = m 2 (2)
Suy ra m2 chia hết cho 2 => m chia hết cho 2 => ta có thể viết m = 2p
Nên (2) trở thành n 2 = 2 p 2
Bước 3: Như vậy ta cũng suy ra n chia hết cho 2 và cũng có thể viết n=2q
Và (1) trở thành 2 = 2 p 2 q = p q ⇒ m n không phải là phân số tối giản, trái với giả thiết
Bước 4: vậy 2 là số vô tỉ.
Lập luận trên đúng tới hết bước nào?
A. Bước 1
B. Bước 2
C. Bước 3
D. Bước 4
Đáp án D
Dựa vào các bước chứng minh ta thấy lập luận đó là chính xác tất cả các bước.