Mệnh đề phủ định của mệnh đề: "Với mọi số thực x, x² > 0" là
A. Với mọi số thực x, x² ≤ 0 B. Tồn tại số thực x, x² < 0
C. Tồn tại số thực x, x² ≤ 0 D. Với mọi số thực x, x² < 0
0" là A. Với mọi số thực x, x² ≤ 0 B. Tồn tại số thực x, x² < 0 C. Tồn tại số thực x, x² ≤ 0 ..."> 0" là A. Với mọi số thực x, x² ≤ 0 B. Tồn tại số thực x, x² < 0 C. Tồn tại số thực x, x² ≤ 0 ..."> 0" là A. Với mọi số thực x, x² ≤ 0 B. Tồn tại số thực x, x² < 0 C. Tồn tại số thực x, x² ≤ 0 ..." />
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp: Kiểm tra tính đúng sai của từng mệnh đề.
Cách giải:
Chọn đáp án C
Vậy số thực a thỏa mãn yêu cầu bài toán là: a ∈ ( 6 ; 7 ]
Đáp án A.
Đặt t = x 2 − x + 1 = x − 1 2 2 + 3 4 ≥ 3 4
Khi đó BPT trở thành
f t = t + 1 + a ln t ≥ 0
Ta có: f ' t = + ∞ ; f 3 4 = 3 4 + a ln 3 4
Với a > 0 ⇒ f t đồng biến trên
3 4 ; + ∞ ⇒ f t ≥ 0 ∀ t ∈ 3 4 ; + ∞ ⇔ M i n 3 4 ; + ∞ f t = 7 4 + a
⇔ a ln 3 4 ≥ − 7 4 ⇔ a ≤ − 7 4 ln 3 4 ≈ 6 , 08.
Vì đề bài yêu cầu tìm số thực lớn nhất
nên suy ra a ∈ 6 ; 7 .
Đáp án B
Đặt
Ta có:
Đặt .
là hàm số đồng biến trên .
Khi đó
3 là mệnh đề đúng, do khi \(\Delta< 0\) thì \(a.f\left(x\right)>0\) ; \(\forall a\ne0\)
Chọn C