Từ các số tự nhiên 1, 2, 3 hỏi có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau và chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số tự nhiên được lập là: 123; 132; 231; 213; 312; 321. Số tự nhiên chia hết cho 11 là: 132; 231; Vậy có 2 số tự nhiên chia hết cho 11.
Sơ đồ con đường |
Lời giải chi tiết |
|
Gọi số có 3 chữ số chia hết cho 3 là a b c - . Khi đó tổng các chữ số là a+b+c chia hết cho 3. Các bộ 3 số thoã mãn điều kiện đó là: 1 ; 3 ; 5 , 1 ; 5 ; 6 , 3 ; 4 ; 5 , 4 ; 5 ; 6 Mỗi bộ 3 lại có: 3 cách chọn hàng trăm. 2 cách chọn hàng chục. 1 cách chọn hàng đơn vị. Có: 3.2.1= 6 cách chọn. Vậy tổng có: 4.6= 24 cách chọn. |
Các số tự nhiên được lập là: 123; 132; 231; 213; 312; 321. Số tự nhiên chia hết cho 7 là: 231. Vậy chỉ có 1 số tự nhiên chia hết cho 7