K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

Trong tam giác BIC có ∠(BIC) + ∠(IBC) + ∠(ICB) = 180o ⇒ (IBC) + (ICB) = 60o

∠(ABC) + ∠(ACB) = 2∠(IBC) + 2∠(ICB) = 2(∠(IBC) + ∠(ICB) ) = 2.60o = 120o

Có ∠A = 180o - 120o = 60o. Chọn A

15 tháng 4 2019

t ko bt lm r :))

3 tháng 5 2018

(Bạn tự vẽ hình giùm)

Ta có \(\widehat{IBC}=\frac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))

và \(\widehat{ICB}=\frac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))

=> \(\widehat{IBC}+\widehat{ICB}=\frac{\widehat{ABC}+\widehat{ACB}}{2}\)

=> \(180^o-\widehat{BIC}=\frac{180^o-\widehat{A}}{2}\)

=> \(180^o-\widehat{BIC}=90^o-\frac{\widehat{A}}{2}\)

=> \(180^o-90^o=\widehat{BIC}-\frac{\widehat{A}}{2}\)

=> \(\widehat{BIC}-\frac{\widehat{A}}{2}=90^o\)

=> \(\widehat{BIC}=90^o+\frac{\widehat{A}}{2}\)

Thay \(\widehat{A}=80^o\)vào biểu thức \(\widehat{BIC}=90^o+\frac{\widehat{A}}{2}\), ta có:

\(\widehat{BIC}=90^o+\frac{80^o}{2}\)

=> \(\widehat{BIC}=90^o+40^o=130^o\)

22 tháng 5 2021

Ta có ^IBC=^ABC2 (BD là tia phân giác của ^ABC)

và ^ICB=^ACB2 (CE là tia phân giác của ^ACB)

=> ^IBC+^ICB=^ABC+^ACB2 

=> 180o−^BIC=180o−^A2 

=> 180o−^BIC=90o−^A2 

=> 180o−90o=^BIC−^A2 

=> ^BIC−^A2 =90o

=> ^BIC=90o+^A2 

Thay ^A=80ovào biểu thức ^BIC=90o+^A2 , ta có:

^BIC=90o+80o2 

=> ^BIC=90o+40o=130o

26 tháng 11 2021

Giúp với 

19 tháng 8 2017

A B C D E F I 1 2 3 4

a) xét tg BEF có: BD là pg của ^B (gt) và EF vg vs BD (gt)

=> tg BEF cân tại B=> BD cx là đg trung trực ứng vs cạnh EF => E đx vs F qua BD

b)ta có: ^ BAC +^ ABC +^ACB=180( t/c tổng các goác trong tg)

=>60+ 2 ^IBC +2.^ICB=180 (vì ^ BAC=60 )

=> ^IBC+^ICB=60

xét tg IBC có: ^BIC +^ICB +^IBC =180 (t/c tổng các góc trong tg)

=> ^BIC= 120 (vì  ^IBC +^ICB =60)

Mà ^BIC +\(^{\widehat{I}_1}\)=180 (vì 2 góc này bù nhau) =>\(^{\widehat{I}_1}\) =60 (vì ^BIC=120)

^BIC +\(\widehat{I_4}\)=180(vì.........................)=>\(\widehat{I_4}\)=60

=> \(^{\widehat{I}_1}\)\(\widehat{I_2}\)=60 (vì  2 góc này đối xứng vs nhau)

và \(\widehat{I_4}\) = \(\widehat{I_3}\)=60(vì ...................................)

=>\(\widehat{I_2}\) =\(\widehat{I_3}\) =60             => IF là tia pg của ^BIC

c)xét tg IDC và tg IFC có: \(\widehat{I_4}\)\(\widehat{I_3}\)  (=60)  ; IC chung  ; ^DCI=^FCI (vì IC là pg của ^C)

=>tg IDC =tg IFC (g.c.g)

=> ID=IF và DC=FC => IC là đg trung trực của DF => D đx vs F qua IC

14 tháng 8 2018

.sai rồi nha bạn góc I3 không bằng I4 được vì chưa chứng minh đối xứng thì ko thể bằng nhau được nha bạn😊

10 tháng 1 2018

A B C D E N I

a) Ta thấy \(\widehat{B}+\widehat{C}=180^o-60^o=120^o\)

\(\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{\widehat{B}+\widehat{C}}{2}=60^o\)

Vậy thì \(\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}=120^o\)

b) Ta có ngay \(\widehat{EIB}=\widehat{IBC}+\widehat{ICB}=60^o=\widehat{BIN}\)

Vậy thì \(\Delta EBI=\Delta NBI\left(g-c-g\right)\Rightarrow IE=IN\)

Tương tự ID = IN nên IE = IN = ID.

22 tháng 2 2020

a, Trong tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 độ
=> góc ABC + góc ACB  =180 độ - góc BAC = 180 độ - 60 độ = 120 độ
Mà BD và CE lần lượt là phân giác của góc ABC ; ACB nên 
120 độ = 2.góc IBC + 2.góc ICB = 2.(góc IBC + góc ICB)
=> góc IBC + góc ICB = 120 độ : 2 = 60 độ
Trong tam giác IBC có : góc IBC + góc ICB + góc BIC = 180 độ
=> góc BIC = 180 độ - (góc IBC + góc ICB) = 180 độ - 60 độ = 120 độ

30 tháng 11 2016

A B 60 C o I O D E x y

a)\(\Delta ABC\)có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\) (tổng 3 góc trong tam giác)

=>\(60^o+\widehat{ABC}+\widehat{ACB}=180^o\)=>\(\widehat{ABC}+\widehat{ACB}=120^o\)

BD là tia phân giác của góc ABC => \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}.\widehat{ABC}\)

CE là tia phân giác của góc ACB => \(\widehat{ACE}=\widehat{ECB}=\frac{1}{2}.\widehat{ACB}\)

=>\(\widehat{DBC}+\widehat{ECB}=\frac{1}{2}.\widehat{ABC}+\frac{1}{2}.\widehat{ACB}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}.120=60^o\)

\(\Delta BOC\) có: \(\widehat{DBC}+\widehat{BOC}+\widehat{ECB}=180^o\) (tổng 3 góc trong tam giác)

=>\(\widehat{BOC}+60^o=180^o\Rightarrow\widehat{BOC}=120^o\)

b) Góc ngoài tại đỉnh B của tam giác ABC kề bù với góc ABC <=>\(\widehat{ABC}+\widehat{CBx}=180^o\)

Góc ngoài tại đỉnh C của tam giác ABC kề bù với góc ACB<=>\(\widehat{ACB}+\widehat{BCy}=180^o\)

=>\(\widehat{ABC}+\widehat{CBx}+\)\(\widehat{ACB}+\widehat{BCy}=360^o\)=>\(\widehat{CBx}+\widehat{BCy}+120^o=360^o\)

=>\(\widehat{CBx}+\widehat{BCy}=240^o\)

BI là tia phân giác của góc CBx => \(\widehat{BCI}=\widehat{IBx}=\frac{1}{2}.\widehat{CBx}\)

CI là tia phân giác của góc BCy => \(\widehat{BCI}=\widehat{ICy}=\frac{1}{2}.\widehat{BCy}\)

=>\(\widehat{CBI}+\widehat{BCI}=\frac{1}{2}.\widehat{CBx}+\frac{1}{2}.\widehat{BCy}=\frac{1}{2}\left(\widehat{CBx}+\widehat{BCy}\right)=\frac{1}{2}.240^o=120^o\)

\(\Delta BCI\) có: \(\widehat{CBI}+\widehat{BCI}+\widehat{BIC}=180^o\) (tổng 3 góc trong tam giác)

=>\(120^o+\widehat{BIC}=180^o\Rightarrow\widehat{BIC}=60^o\)

Vậy ............................