đồ thị hàm số y=ax+b cắt trục hoành tại điểm x=3 và đi qua điểm A(-2,4). xác định a,b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với a = 2 hàm số có dạng y = 2x + b.
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:
0 = 2.1,5 + b => b = -3
Vậy hàm số là y = 2x – 3
b) Với a = 3 hàm số có dạng y = 3x + b.
Đồ thị hàm số đi qua điểm (2; 2), nên ta có:
2 = 3.2 + b => b = 2 – 6 = - 4
Vậy hàm số là y = 3x – 4
c) Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b
Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:
√3 + 5 = √3 . 1 + b => b = 5
Vậy hàm số là y = √3 x + 5
Bài 1:
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}-4a+b=0\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{4}\\b=3\end{matrix}\right.\)
a/ cắt trục tung tại điểm có tung độ bằng -3; cắt trục hoành tại điểm có hành độ -2 có nghĩa là đồ thị hàm số đi qua X(0,-3); Y(-2,0)
\(\Rightarrow\hept{\begin{cases}-3=b\\0=-2a+b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{-3}{2}\\b=-3\end{cases}}\)
b/ Đồ thị đi qua A(1;3) và B(-2;6)
\(\Rightarrow\hept{\begin{cases}3=a+b\\6=-2a+b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=4\end{cases}}\)
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
a) Hàm số đã cho là y = 2x + b.
Vì đồ thị đi qua điểm A(1,5; 0) nên 0 = 2 . 1,5 + b. Suy ra b = -3.
Vậy hàm số đã cho là y = 2x - 3.
b) Hàm số đã cho là y = 3x + b.
Vì đồ thị đi qua điểm A(2; 2) nên 2 = 3 . 2 + b. Suy ra b = -4.
Vậy hàm số đã cho là y = 3x - 4.
\(\left\{{}\begin{matrix}3a+b=0\\-2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=-3a=-3\cdot\dfrac{-4}{5}=\dfrac{12}{5}\end{matrix}\right.\)