Cho các số x, y, z tỉ lệ với các số a, b, c. Khi đó ( x 2 + 2 y 2 + 3 z 2 ) ( a 2 + 2 b 2 + 3 c 2 ) bằng
A. ax + 2by + 3cz
B. 2 a x + b y + 3 c z 2
C. 2 a x + 3 b y + c z 2
D. a x + 2 b y + 3 c z 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
z tỉ lệ thuận với y theo hệ số tỉ lệ 2
\(\Rightarrow z=2y\)
y tỉ lệ nghịch với x theo hệ số tỉ lệ 3
\(\Rightarrow y=\dfrac{3}{x}\)
Do đó:
\(z=2\left(\dfrac{3}{x}\right)\)
\(z=\dfrac{2\cdot3}{x}=\dfrac{6}{x}\)
Vì \(z=\dfrac{6}{x}\) nên z tỉ lệ nghịch với x theo hệ số tỉ lệ là 6, ta chọn D.
Đặt k bằng tỉ số của dãy tỉ số bằng nhau:
\(k=\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
=> \(x=ak;y=bk;z=ck\)
Khi đó ta có:
\(\left(x+y+z\right)^2=\left(ak+bk+ck\right)^2=k^2\left(a+b+c\right)^2=k^2.1^2=k^2\) (1)
(Vì \(a+b+c=1\))
Và: \(x^2+y^2+z^2=\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2=k^2\left(a^2+b^2+c^2\right)=k^2\) (2)
(vì \(a^2+b^2+c^2=1\))
Từ (1) và (2) suy ra \(x^2+y^2+z^2=\left(x+y+z\right)^2=k^2\)
Vì x, y, z tỉ lệ với các số a, b, c nên suy ra x = ka, y = kb, z = kc
Thay x = ka, y = kb, z = kc vào ( x 2 + 2 y 2 + 3 z 2 ) ( a 2 + 2 b 2 + 3 c 2 ) ta được
[ ( k a ) 2 + 2 ( k b ) 2 + 3 ( k c ) 2 ] ( a 2 + 2 b 2 + 3 c 2 ) = ( k 2 a 2 + 2 k 2 b 2 + 3 k 2 c 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = k 2 ( a 2 + 2 b 2 + 3 c 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = k 2 ( a 2 + 2 b 2 + 3 c 2 ) 2 = [ k ( a 2 + 2 b 2 + 3 c 2 ) ] 2 = ( k a 2 + 2 k b 2 + 3 k c 2 ) 2 = ( k a . a + 2 k b . b + 3 k c . c ) 2 = ( x a + 2 y b + 3 z c ) 2
do x = ka,y = kb, z = kc
Vậy
( x 2 + 2 y 2 + 3 z 2 ) ( a 2 + 2 b 2 + 3 c 2 ) = ( a x + 2 b y + 3 c z ) 2
Đáp án cần chọn là: D