Cho biểu thức B = x - 3 x + 1 x + 3 x . x + 3 x - 1 với x > 0; x ≠ 1
Tìm giá trị nhỏ nhất của P = A.B với x > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
a: Ta có: |x+4|=1
=>x+4=1 hoặc x+4=-1
=>x=-3(loại) hoặc x=-5
Khi x=-5 thì \(A=\dfrac{\left(-5\right)^2-5}{3\left(-5+3\right)}=\dfrac{20}{3\cdot\left(-2\right)}=\dfrac{-10}{3}\)
b: \(B=\dfrac{x-1+x+1-3+x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x-3}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x+1}\)
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
a: M=A:B
\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1
a: Ta có: \(x=\sqrt{28-16\sqrt{3}}+2\sqrt{3}\)
\(=4-2\sqrt{3}+2\sqrt{3}\)
=4
Thay x=4 vào B, ta được:
\(B=\dfrac{2-4}{2}=-1\)
`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`
Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`
`b)` Với `x >= 0,x ne 4` có:
`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[\sqrt{x}-2]/[\sqrt{x}-3]`
`c)` Với `x >= 0,x ne 4` có:
`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`
Có: `C >= 1`
`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`
`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`
`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`
Vì `x >= 0=>\sqrt{x} >= 0`
`=>\sqrt{x}-3 > 0`
`<=>x > 9` (t/m đk)
Câu 2:
a,
diện tích nhựa là: 2π. (0,4:2). 16= 6,4π (cm2)
b,
gọi chữ số hàng chục là a (a>0, a ∈N)
hàng đơn vị là b (b∈N)
hiệu 2 chữ số là: a-b=3 (1)
tổng bình phương 2 chữ số là: a2+b2=45 (2)
từ (1) và (2) ta có hpt:
\(\left\{{}\begin{matrix}a-b=3\\a^2+b^2=45\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a=6\\b=3\end{matrix}\right.\)
vậy chữ số đó là 63
Câu 1
a, Thay x=25 vào biểu thức B ta có
B=\(\dfrac{\sqrt{25}-3}{\sqrt{25}-1}=\dfrac{5-3}{5-1}=\dfrac{2}{4}=\dfrac{1}{2}\)
b, Ta có M=\(A\cdot B\)
⇒\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right)\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
=\(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
=\(\dfrac{3x-3\sqrt{x}}{\left(\sqrt{x}+3\right)}\cdot\dfrac{1}{\sqrt{x}-1}\)
=\(\dfrac{3\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{3\sqrt{x}}{\sqrt{x}+3}\)
c, Để M<\(\sqrt{M}\)
Thì\(\text{}\text{}\text{}\text{}\dfrac{3\sqrt{x}}{\sqrt{x}+3}< \sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}+3}}\)
⇔\(\text{}\text{}\text{}\text{}\dfrac{3\sqrt{x}}{\sqrt{x}+3}< \dfrac{\sqrt{3\sqrt{x}\left(\sqrt{x}+3\right)}}{\sqrt{x}+3}\)
⇔\(\text{}\text{}\text{}\text{}3\sqrt{x}< \sqrt{3\sqrt{x}\left(\sqrt{x}+3\right)}\)
⇔\(\text{}\text{}\text{}\text{}9x< 3\sqrt{x}\left(\sqrt{x}+3\right)\)
⇔\(\text{}\text{}\text{}\text{}3\sqrt{x}< \sqrt{x}+3\)
⇔\(\text{}\text{}\text{}\text{}2\sqrt{x}< 3\)
⇔\(\text{}\text{}\text{}\text{}\sqrt{x}< \dfrac{3}{2}\)
⇒\(\left\{{}\begin{matrix}x\ge0\\x< \dfrac{9}{4}\end{matrix}\right.\)
⇒\(0\le x< \dfrac{9}{4}\)
`1/P=(sqrtx+1)/(sqrtx-3)=(sqrtx-3+4)/(sqrtx-3)=1+4/(sqrtx-3)(x>=0,x\ne9)`
Để `1/P` max thì `4/(sqrtx-3)` max
Nhận thấy nếu `x<9` thì `sqrtx-3<0` hay `4/(sqrtx-3)<0`
Nếu `x>9` thì `4/(sqrtx-3)>0`
Do đó ta xét `x>9` hay `x>=10`
`=>sqrtx-3>=sqrt10-3`
`=>4/(sqrtx-3)<=4/(sqrt10-3)`
Hay `(1/P)_(max)=1+4/(sqrt10-3)<=>x=10`
Vậy GTNN của P là 2 3 + 3 đạt được khi x = 4 + 2 3