Cho hàm số y = mx + 1 x + n . Biết đồ thị hàm số có tiệm cận đứng là x = -1 và y'(0) = 2. Giá trị của m + n là
A. 2
B. 4
C. 1
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương pháp:
- Tiệm cận đứng: Đường thẳng được gọi là tiệm cận đứng của đồ thị hàm số y=f(x) nếu nó thỏa mãn một trong 4 điều kiện sau:
Chọn A.
Phương pháp:
- Tiệm cận đứng: Đường thẳng x = x 0 được gọi là tiệm cận đứng của đồ thị hàm số y=f(x) nếu nó thỏa mãn một trong 4 điều kiện sau:
- Tiệm cận ngang: Đường thẳng y = y 0 được gọi là tiệm cận ngang của đồ thị hàm số y=f(x) nếu nó thỏa mãn một trong 2 điều kiện sau:
Đáp án B
Sai lầm thường gặp: Tập xác định D = ℝ \ 3 .
Đạo hàm y ' = − 2 x − 3 2 ,0, ∀ x ∈ D ⇒ Hàm số nghịch biến trên ℝ \ 3 , hoặc làm số nghịch biến trên − ∞ ; 3 ∪ 3 ; + ∞ . Hàm số không có cực trị.
Tiệm cận đứng: x=3; tiệm cận ngang: y=1. Đồ thị hàm số nhận giao điểm I 3 ; 1 của hai đường tiệm cận làm tâm đối xứng.
Từ đó nhiều học sinh kết luận các mệnh đề 1 , 3 , 4 đúng và chọn ngay A.
Tuy nhiên đây là phương án sai.
Phân tích sai lầm:
Mệnh đề (1) sai, sửa lại: hàm số nghịch biến trên mỗi khoảng − ∞ ; 3 và 3 ; + ∞ . Học sinh cần nhớ rằng, ta chỉ học định nghĩa hàm số đồng biến (nghịch biến) trên khoảng, đoạn, nửa khoảng; chứ không có trên những khoảng hợp nhau.
Mệnh đề (2) sai. Đồ thị hàm số có một tiệm cận đứng là x=3, một tiệm cận ngang là y=1.
Mệnh đề 3 , 4 đúng.
Chọn C.
Với đồ thị hàm số y = a x + 1 b x - 2 nhận đường thẳng x = 2 b làm tiệm cận đứng
Theo đề bài: x = 2 là tiệm cận đứng của đồ thị nên
Với b ≠ 0 đồ thị hàm số y = a x + 1 b x - 2 nhận đường thẳng y = a b làm tiệm cận ngang.
Theo đề bài: y = 3 là tiệm cận ngang của đò thị hàm số nên
Vậy a + b = 4.
Chọn đáp án C
thì đồ thị hàm số y = a x + 1 b x - 2 có hai đường tiệm cận:
Đường tiệm cận đứng là x = 2 b và đường tiệm cận ngang là y = a b
Từ giả thiết bài toán ta có: