K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

Tập xác định D = [ -2;2 ]

y ' = 4 - 2 x 2 4 - x 2 ; x ∈ - 2 ; 2 y ' = 0 ⇔ x = ± 2

* Lập bảng biến thiên và suy ra hàm số nghịch biến trên các khoảng  - 2 ; - 2 ; 2 ; 2

Đáp án C

10 tháng 11 2017

NV
9 tháng 9 2021

ĐKXĐ: \(x\in\left[-2;2\right]\)

\(y'=\dfrac{-2x}{2\sqrt{4-x^2}}=\dfrac{-x}{\sqrt{4-x^2}}=0\Rightarrow x=0\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(-2;0\right)\) và nghịch biến trên \(\left(0;2\right)\)

NV
22 tháng 6 2021

1.

\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)

Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)

Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)

2.

\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)

Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)

NV
9 tháng 9 2021

a.

\(y'=4x^3+8x=4x\left(x^2+2\right)=0\Rightarrow x=0\)

Dấu của y':

undefined

Hàm đồng biến trên \(\left(0;+\infty\right)\) và nghịch biến trên \(\left(-\infty;0\right)\)

b.

\(y'=3x^2+6x+3=3\left(x+1\right)^2\ge0\) ; \(\forall x\)

\(\Rightarrow\) Hàm đồng biến trên R

 

a: loading...

Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot\left(-1\right)}=\dfrac{6}{2}=3\\y=-\dfrac{6^2-4\cdot\left(-1\right)\cdot\left(-9\right)}{4\cdot\left(-1\right)}=0\end{matrix}\right.\)

=>Hàm số đồng biến khi x<3 và nghịch biến khi x>3

b: loading...

Tọa độ đỉnh là I(-2;-4)

=>Hàm số đồng biến khi x>-2 và nghịch biến khi x<-2