Cho hàm số y = a x 3 + b x 2 + c x + d ( a , b , c , d ∈ ℝ ) có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là
A. 0
B. 2
C. 1
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Vì A là giao điểm của (d) và (d') nên hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (d) và (d')
hay x=2x+2
\(\Leftrightarrow x-2x=2\)
\(\Leftrightarrow-x=2\)
hay x=-2
Thay x=-2 vào hàm số y=x, ta được:
y=-2
Vậy: A(-2;-2)
\(y=\dfrac{1}{2}\left(x^2-1\right)\) không phải hàm số bậc nhất
\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)
Hs bậc nhất là a,b,d,e
\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)
Chọn B
Dựa vào đồ thị ta khẳng định hàm số đã cho có 2 điểm cực trị.