cho 30 số tự nhiên liên tiếp tổng 1994. Tìm ƯCLN của 30 số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik làm có đúng không ? góp ý giùm nhé
Gọi 30 số đó là a1; a2; a3;...;a30
Vì ƯCLN(a1; a2;...;a30) là d
=> đặt a1 = d.b1
đặt a2 = d.b2
...
đặt a3 = d.b3
=> d.b1 + d.b2 +...+ d.b30 = 1994
=> d(b1 + b2 +...+ b30) = 1994
=> 1994 chia hết cho d
=> d thuộc {1; 2; 997; 1994) (Vì d thuộc N*) (1)
Mà b1; b2;...;b30 thuộc N* => b1 + b2 +...+ b30 > 30
=> d < 1994/30 => d < 66 (2)
Từ (1) và (2) => d thuộc {1; 2}
Mà d là lớn nhất => d = 2
Vậy d = 2
Vì 30 số đó là 30 số tự nhiên liên tiếp nên chắc chắn sẽ có 15 số chẵn và 15 số lẻ
\(\Rightarrow\)ƯCLN của 30 số đó là 1
Vậy ƯCLN của 30 số này là 1
mik làm có đúng không ? góp ý giùm nhé
Gọi 30 số đó là a1; a2; a3;...;a30
Vì ƯCLN(a1; a2;...;a30) là d
=> đặt a1 = d.b1
đặt a2 = d.b2
...
đặt a3 = d.b3
=> d.b1 + d.b2 +...+ d.b30 = 1994
=> d(b1 + b2 +...+ b30) = 1994
=> 1994 chia hết cho d
=> d thuộc {1; 2; 997; 1994) (Vì d thuộc N*) (1)
Mà b1; b2;...;b30 thuộc N* => b1 + b2 +...+ b30 > 30
=> d < 1994/30 => d < 66 (2)
Từ (1) và (2) => d thuộc {1; 2}
Mà d là lớn nhất => d = 2
Vậy d = 2
mik làm có đúng không ? góp ý giùm nhé
Gọi 30 số đó là a1; a2; a3;...;a30
Vì ƯCLN(a1; a2;...;a30) là d
=> đặt a1 = d.b1
đặt a2 = d.b2
...
đặt a3 = d.b3
=> d.b1 + d.b2 +...+ d.b30 = 1994
=> d(b1 + b2 +...+ b30) = 1994
=> 1994 chia hết cho d
=> d thuộc {1; 2; 997; 1994) (Vì d thuộc N*) (1)
Mà b1; b2;...;b30 thuộc N* => b1 + b2 +...+ b30 > 30
=> d < 1994/30 => d < 66 (2)
Từ (1) và (2) => d thuộc {1; 2}
Mà d là lớn nhất => d = 2
Vậy d = 2
Gọi 30 số đó là a1; a2; a3;...;a30
Vì ƯCLN(a1; a2;...;a30) là d
=> đặt a1 = d.b1
đặt a2 = d.b2
...
đặt a3 = d.b3
=> d.b1 + d.b2 +...+ d.b30 = 1994
=> d(b1 + b2 +...+ b30) = 1994
=> 1994 chia hết cho d
=> d thuộc {1; 2; 997; 1994) (Vì d thuộc N*) (1)
Mà b1; b2;...;b30 thuộc N* => b1 + b2 +...+ b30 > 30
=> d < 1994/30 => d < 66 (2)
Từ (1) và (2) => d thuộc {1; 2}
Mà d là lớn nhất => d = 2
Vậy d = 2
nguồn: olm
Gọi 30 số đó là a1; a2; a3;...;a30 (điều kiện...)
Theo bài ra, ta có:
a1 + a2 + a3 +...+ a30 = 1994 (1)
Vì ƯCLN(a1; a2; a3;...;a30) là d
=> đặt a1 = d.b1
đặt a2 = d.b2 (b1; b2; b3;...; b30 thuộc N*)
đặt a3 = d.b3 ((b1; b2; b3;...;b30) = 1)
...
đặt a30 = d.b30
Thay vào (1), ta có:
d.b1 + d.b2 + d.b3 +...+ d.b30 = 1994
d(b1 + b2 + b3 +...+ b30) = 1994
=> 1994 chia hết cho d
=> d thuộc Ư(1994)
=> d thuộc {1; 2; 997; 1994} (2)
Mà b1; b2; b3;...;b30 thuộc N* => b1 + b2 + b3 +...+ b30 > 30
=> d < 1994/30
=> d < 66 (3)
Từ (2) và (3) => d thuộc {1; 2}
Mà d lớn nhất
Từ 2 điều trên => d = 2
Vậy...