Cho tam giác ABC có M là trung điểm của BC; I là trung điểm của AM. Khẳng định nào sau đây đúng ?
A. I B → + 2 I C → + I A → = 0 → .
B. I B → + I C → + 2 I A → = 0 → .
C. 2 I B → + I C → + I A → = 0 → .
D. I B → + I C → + I A → = 0 → .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: AM = 1/2 BC => AM = BM, CM
xét tam giác ABM có : AM = BM
=> ABM cân tại M
xét tam giác ACM có : AM = CM
=> ACM cân tại M
Mà góc AMB + AMC = 180 độ ( kề bù )
=> góc B + góc BAM + góc C + góc CAM = 180 độ
Mà góc B = góc BAM
góc C = góc CAM
=> BAM + CAM = 90 độ
=> tam giác ABC cân tại A
a: Xét tứ giác ABNC có
M là trung điểm của AN
M là trung điểm của BC
Do đó:ABNC là hình bình hành
Suy ra: AB=NC
Xet ΔABD và ΔCBA có
AB/CB=BD/BA
góc B chung
=>ΔABD đồng dạng vơi ΔCBA
Bài 1:
Xét tứ giác ABCD:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^{o}\) (Tổng các góc trong tứ giác).
Mà \(\widehat{A}= \) \(57^o;\) \(\widehat{C}=\) \(110^o;\) \(\widehat{D}=\) \(75^o\left(gt\right).\)
\(\Rightarrow\) \(\widehat{B}=\) \(118^o.\)
a: Xét ΔNAB và ΔNEM có
NA=NE
\(\widehat{ANB}=\widehat{ENM}\)
NB=NM
Do đó:ΔNAB=ΔNEM
b: Xét ΔMAB có BA=BM
nên ΔBAM cân tại B
c: Xét ΔAEC có
CN là đường trung tuyến
CM=2/3CN
Do đó: M là trọng tâm của ΔAEC
a) Xét ΔNAB và ΔNEM có
NA=NE(gt)
\(\widehat{ANB}=\widehat{ENM}\)(hai góc đối đỉnh)
NB=NM(N là trung điểm của BM)
Do đó: ΔNAB=ΔNEM(c-g-c)
b) Ta có: BC=2AB(gt)
mà BC=2BM(M là trung điểm của BC)
nên AB=BM
Xét ΔBAM có BA=BM(cmt)
nên ΔBAM cân tại B(Định nghĩa tam giác cân)
a: OM//AH
ON//BH
MN//AB
=>góc BAH=góc OMN và góc ABH=góc ONM
=>ΔABH đồng dạng với ΔMNO
b: A,G,M thẳng hàng và H,G,O thẳng hàng
=>góc AGH=góc MGO
=>ΔAHG đồng dạng với ΔMOG
=>OM/AH=MG/AG
=>OM/AH=MN/AB=1/2
=>GM/GA=1/2
=>G là trọng tâm của ΔACB
xét tam giác NAB và tam giác NEm , có
AN=NE
MN=NB
góc ANB = góc ANB
=> TAM GIÁC NAB = TAM GIÁC NEM (c.g.c)
a) xét tam giác NAB và tam giác NEM có
AN=EN ( theo gt )
BN=MN ( theo gt )
góc ANB = góc MNE ( đối đỉnh )
Vậy => tam giác NAB = tam giác NEM ( c.g.c )
b0 vì MB=MC ( gt ) (1)
Mà BC=2AB ( gt ) (2)
từ (1) và (2) => AB=MB
=> tam giác MAB cân tại B
c) xét tam giác CAE có
AN = NE ( Theo gt ) => CN là trung tuyến thuộc cạnh AE (1)
Vì MN = BN ( gt ) ; MB = MC ( gt ) => Mn = 1/2 MC hay CM = 2/3 CN (2)
từ (1) và (2) => M là trọng tâm của tam giác ACE
k cho mk nha
a) Xét tam giác NAB và tam giác NEM có:
NA = NE ( gt)
ANB = ENM ( đối đỉnh )
BN = NM ( N là trung điểm BM )
=> tam giác NAB = tam giác NEM ( cgc)
b. Ta có M là trung điểm BC (gt)
=> BM = MC = 1/2 BC (1)
Lại có : BC = 2 AB ( gt)
=> AB = 1/2 BC (2)
Từ (1) và (2) => BM=MC=AB hay BM = AB
=> tam giác ABM cân tại B.
c. Ta có : tam giác ANB = tam giác ENM ( cm câu a)
=> góc ABN = góc EMN (góc tương ứng )
Mà chúng ở vị trí so le trong => AB // ME
Gọi giao điểm của EM và AC là I => IE // AB (I thuộc AC do cách dựng) => MI // AB
Xét tam giác ABC có : IM // AB ( cmt)
=> MC / BM = CI / IA
Mà MC = BM (gt) => CI = CA => EI là trung tuyến tam giác AEC
Mà CN cũng là trung tuyến tam giác AEC ( AN = NE )
CN giao EI tại M => M là trọng tâm tam giác AEC.
d. Ta có M là trọng tâm tam giác AEC (cmt)
=> MA = MC(tc trọng tâm tam giác)
=> MA = AB = MB => Tam giác ABM đều => góc BAM = 60 độ
Ta có : AN là trung tuyến tam giác ABN (N là trung điểm NB)
=> AN cũng là đường cao và là đường phân giác
=> ANB = 90 độ và góc BAN = 1/2 . 60= 30 độ
Xét tam giác ABN có
Góc A < B < N
=> BN < AN < AB ( quan hệ giữa cạnh và góc đối diện)
Hay AB > AN => AB > 2/3 AN.