Cho tứ diện ABCD với M, N lần lượt là trọng tâm các tam giác ABD, ACD. Xét các khẳng định sau:
(I) MN // mp(ABC).
(II) MN // mp (BCD).
(III) MN // mp(ACD).
(IV) MN // mp(CDA).
A. I, II.
B. II, III.
C. III, IV.
D. I, IV.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là trung điểm của AB, M, N lần lượt là trọng tâm của các tam giác ABC, ABD nên:
Theo định lí Ta – lét ta có: MN // CD. Vậy MN // (BCD), MN // (ACD).
Đáp án C.
Đáp án A.
Hình vẽ dễ thấy tính song song là: G 1 G 2 ∥ A B
Chứng minh
Vì G G 1 G A = G G 2 G B = 1 4 ⇒ G 1 G 2 ∥ A B
Gọi P và Q lần lượt là trung điểm của AC' và CA'.
CC' giao MN tại I
Xét tam giác AC'C. P là trung điểm AC', M là trung điểm của AC
=> PM là đường trung bình tam giác AC'C => PM//CC'
hay C'I//PM
C' là trọng tâm tam giác ABD => C'N=AN/3.(T/c trọng tâm)
Mà P là trung điểm AC' => C' là trung điểm PN.
Xét tam giác PNM: C' là trung điểm PN, C'I//PM => I là trung điểm của MN
=> CC' đi qua trung điểm của MN (1)
Tương tự ta chứng minh được AA' đi qua trung điểm MN (2)
Tương tự xét trong tam giác DMB: BB' và DD' cùng đi qua trung điểm I của MN (3)
Từ (1),(2) và (3) => AA';BB';CC';DD',MN đồng quy (đpcm).
Bn ơi!
Chứng minh AA' đi qua trung điểm MN làm cách nào vậy ạ!
Vì G là trọng tâm tam giác BCD và F là trung điểm của CD nên G thuộc (ABF)
Ta có E là trung điểm của AB nên E thuộc ( ABF).
Gọi M là giao điểm của EG và AF mà A F ⊂ A C D suy ra M thuộc (ACD).
Vậy giao điểm của EG và mp (ACD) là giao điểm M của EG và AF
Chọn B.
Khẳng định thứ (III) kia chính xác là gì nhỉ? Chắc chắn 30G là ko hợp lý rồi
Chọn A.
- Gọi I là trung điểm của AD.
- Do M, N là trọng tâm tam giác ABD, ACD nên:
- Theo định lý Talet có: MN // BC.
- Mà: BC ⊂ (BCD), BC ⊂ (ABC).
- Vậy: MN // (BCD); MN // (ABC).