Cho tứ diện ABCD. Gọi M, N, P lần lượt là trọng tâm của các tam giác ABC, ACD, ADB. Trong các mệnh đề sau, mệnh đề nào sai?
A. MN // CD
B. (MNP) // (BCD)
C. MN // (ABD)
D. MP // (ACD)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
- Gọi I là trung điểm của AD.
- Do M, N là trọng tâm tam giác ABD, ACD nên:
- Theo định lý Talet có: MN // BC.
- Mà: BC ⊂ (BCD), BC ⊂ (ABC).
- Vậy: MN // (BCD); MN // (ABC).
Đáp án B
Gọi M là trung điểm của AB
Tam giác ABC có trọng tâm I suy ra M I M C = 1 3
Tam giác ABC có trọng tâm J suy ra M J M D = 1 3
Khi đó M I M C = M J M D ⇒ I J / / C D (định lí Talet)
Gọi E là trung điểm của AB, M, N lần lượt là trọng tâm của các tam giác ABC, ABD nên:
Theo định lí Ta – lét ta có: MN // CD. Vậy MN // (BCD), MN // (ACD).
Đáp án C.
Gọi P và Q lần lượt là trung điểm của AC' và CA'.
CC' giao MN tại I
Xét tam giác AC'C. P là trung điểm AC', M là trung điểm của AC
=> PM là đường trung bình tam giác AC'C => PM//CC'
hay C'I//PM
C' là trọng tâm tam giác ABD => C'N=AN/3.(T/c trọng tâm)
Mà P là trung điểm AC' => C' là trung điểm PN.
Xét tam giác PNM: C' là trung điểm PN, C'I//PM => I là trung điểm của MN
=> CC' đi qua trung điểm của MN (1)
Tương tự ta chứng minh được AA' đi qua trung điểm MN (2)
Tương tự xét trong tam giác DMB: BB' và DD' cùng đi qua trung điểm I của MN (3)
Từ (1),(2) và (3) => AA';BB';CC';DD',MN đồng quy (đpcm).
Bn ơi!
Chứng minh AA' đi qua trung điểm MN làm cách nào vậy ạ!
Đáp án A