K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Đáp án A

Tam giác SAB có I là trọng tâm và E là trung điểm của AB

Nên ta có S I S E = 2 3  (1)

Tam giác SAD có J là trọng tâm và F là trung điểm của AD

Nên ta có S J S F = 2 3  (2)

Từ (1) và (2) ta có: IJ // EF (3) (định lý Ta-lét trong tam giác SEF)

Tam giác ABD có EF là đường trung bình nên EF // BD (4)

Từ (3) và (4) suy ra IJ // BD

Mà BD  (SBD)

Do đó IJ // (SBD).

10 tháng 5 2017

Đáp án D.

NV
21 tháng 12 2020

Ta có: OF là đường trung bình tam giác SAC

\(\Rightarrow OF//SA\Rightarrow OF//\left(SAD\right)\)

OE là đường trung bình tam giác SBD

\(\Rightarrow OE//SD\Rightarrow OE//\left(SAD\right)\)

\(\Rightarrow\left(OEF\right)//\left(SAD\right)\)

23 tháng 12 2020

Cảm ơn bạn

11 tháng 8 2018

Đáp án A

30 tháng 11 2017

Đáp án là A

17 tháng 12 2019

19 tháng 11 2017

Theo câu 27, ta có MN // AB // IJ và thiết diện của mặt phẳng (GIJ) với hình chóp là tứ giác MNJI.

Ta có MN đi qua trọng tâm G cảu tam giác SAB và song song với AB nên  M N A B = 2 3 = > M N = 2 3 A B

 

IJ là đường trung bình của hình thangABCD nên:  IJ = 1 2 ( A B + C D )

Do IJ // MN nên thiết diện là hình bình hành khi và chỉ khi IJ = MN

= > 2 3 A B = 1 2 ( A B + C D )

 

AB = 3CD

Đáp án B

26 tháng 2 2017

17 tháng 7 2019

5 tháng 9 2017