giải bằng lời
Số sách quyên góp của 3 lớp 7A1, 7A2, 7A3 trong phong trào quyên góp sách lần lượt tỉ lệ với 5;4;3. Tính số sách quyên góp của mỗi lớp, biết rằng lớp 7A1 quyên góp đc nhiều hơn lớp 7A3 là 24 quyển
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số sách 7A,7B,7C ll là \(a,b,c(a,b,c\in \mathbb{N^*})\)
Áp dụng tc dtsbn:
\(\dfrac{a}{30}=\dfrac{b}{40}=\dfrac{c}{36}=\dfrac{c-a}{36-30}=\dfrac{8}{6}=\dfrac{4}{3}\\ \Rightarrow\left\{{}\begin{matrix}a=40\\b=\dfrac{160}{3}\\c=48\end{matrix}\right.\)
Vậy sai đề
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{6}=\dfrac{c}{4}=\dfrac{a+b+c}{5+6+4}=\dfrac{180}{15}=12\)
Do đó: a=60; b=72; c=48
cho tam giác ABC vuông tại A có AB=AC gọi K là trung điểm của cạnh BC a,Chứng minh Tam giác AKB=Tam giác AKC và AK vuông góc BC b,Từ C kẻ đường vuông góc với BC cắt AB tại E.Chứng minh AK//CE và CE=CB c, So sánh AK và CE
bạn lấy 120 cuốn chia lần lượt theo tỷ lệ ý...như này nè:
Lớp 7a1 quyên gốp được tất cả số sách là:
120:2=...
Lớp 7a2.......là:
120:3+.... lần lượt nv nhé
Gọi số sách 4 lớp 7A1, 7A2, 7A3, 7A4 đóng góp được lần lượt là a,b,c,d(a,b,c,d>0)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{d}{6}=\dfrac{a+b-c}{9+8-7}=\dfrac{40}{10}=4\)
\(\dfrac{a}{9}=4\Rightarrow a=36\\ \dfrac{b}{8}=4\Rightarrow b=32\\ \dfrac{c}{7}=4\Rightarrow c=28\\ \dfrac{d}{6}=4\Rightarrow d=24\)
Vậy số sách 4 lớp 7A1, 7A2, 7A3, 7A4 đóng góp được lần lượt là 36, 32, 28, 24 quyển sách
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{7}=\dfrac{c}{8}=\dfrac{d}{6}=\dfrac{a+b-c}{9+7-8}=\dfrac{40}{8}=5\)
Do đó: a=45; b=35; c=40; d=30
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{6}=\dfrac{c-a}{6-3}=14\)
Do đó: a=42; b=56; c=84
\(\text{Gọi x;y;z lần lượt là số sách lớp 7A,7B,7C:}\)
(đk:x;y;z\(\in\)N*,đơn vị:sách)
\(\text{Ta có:}\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{6}\text{ và }z-x=42\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{z-x}{6-3}=\dfrac{42}{3}=14\)
\(\Rightarrow x=14.3=42\text{(sách)}\)
\(y=14.4=56\text{(sách)}\)
\(z=14.6=84\text{(sách)}\)
\(\text{Vậy số sách lớp 7A là: 42 sách}\)
\(\text{lớp 7B là:56 sách}\)
\(\text{lớp 7C là:84 sách}\)
Gọi số sách 3 lớp 7A ; 7B ; 7C ủng hộ lần lượt là a;b;c (a;b;c \(\inℕ^∗\))
Ta có c - a = 22
Lại có \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{22}{2}=11\)
=> a = 33 ; b = 44 ; c = 55
Vậy số sách 3 lớp 7A ; 7B ; 7C ủng hộ lần lượt là 33 quyển ;44 quyển ;55 quyển
Giai : Gọi số sách ba lớp 7A;7B;7C là a,b,c (\(a,b,c\inℕ\))
Từ đề bài ta có : \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{c-a}{5-3}=\frac{22}{2}=11\)
Từ \(\frac{a}{3}=11\Leftrightarrow a=33\)
=> \(\frac{b}{4}=11\Leftrightarrow b=44\)
=> \(\frac{c}{5}=11\Leftrightarrow c=55\)
Vậy số sách giáo khoa cũ của các lớp 7A;7B;7C lần lượt là 33 (quyển); 44 (quyển) ; 55 (quyển)
gọi số học sinh của lớp 7a1 7a2 7a3 lần lượt là a,b,c
theo đề bài ta có
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{4}\); 7a1-7a3=24
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
bạn chưa làm hết ;-;