gọi A(x1,y1), B(x2,y2) là tọa độ giao điểm của (P):y=2x-x2 và \(\Delta\): y=3x-6. Giá trị y1+y2 bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai giúp mình với mình cần gấp bạn nào làm đúng đầu tiên mình k cho
Xét pt hoành độ gđ của (d) và (P) có:
\(x^2=2x+4m^2-8m+3\)
\(\Leftrightarrow x^2-2x-4m^2+8m-3=0\) (1)
\(\Delta=4-4\left(-4m^2+8m-3\right)\)\(=16m^2-32m+16=16\left(m-1\right)^2\)
Để (P) và (d) cắt nhau tại hai điểm pb khi pt (1) có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m\ne1\)
Có \(A\in\left(P\right)\Rightarrow y_1=x_1^2\)
\(B\in\left(P\right)\Rightarrow y_2=x_2^2\) , trong đó x1; x2 là hai nghiệm của pt (1)
Theo định lí viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-4m^2+8m-3\end{matrix}\right.\)
\(y_1+y_2=10\)
\(\Leftrightarrow x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)
\(\Leftrightarrow4-2\left(-4m^2+8m-3\right)=10\)
\(\Leftrightarrow8m^2-16m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)(tm)
Vậy...
Giả sử y và x tỉ lệ thuận theo tỉ hệ số tỉ lệ k; (k ≠ 0)
Khi đó ta có: y1 = k.x1 ; y2 = k.x2
Do đó y1 + y2 = kx1 + kx2 = k(x1 + x2)
Hay 10 = k.2 ⇒ k = 5.
Do đó y = 5x.
* Với x1 = 3 thì y1 = 5.3 =15
Vì x1 + x2 = 2 nên x2 = 2 – x1= 2 - 3 = -1
Vì y1 + y2 = 10 nên y2 = 10 – y1 = 10 -15 = - 5
* Từ đó ta có bảng sau:
x1 = 3 | y1 = 15 |
x2 = -1 | y2 = -5 |
x1 + x2=2 | y1 + y2 = 10 |