Hình nón có thể tích lớn nhất nội tiếp một mặt cầu bán kính R cho trước bằng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Kí hiệu như hình vẽ bên
Chuẩn hóa R = 1 và gọi r,h lầm lượt là bán kính đáy và chiều cao của hình nón
⇒ Thể tích khối nón là V 1 = 1 3 π r 2 h
Tam giác AMK vuông tại K, có:
I K 2 = I M . I A ⇔ r 2 = h 2 R − h = h 2 − h
Để V 1 V 2 lớn nhất ⇔ V 2 V 1 = V C − V 1 V 1 = V C V 1 − 1 nhỏ nhất ⇔ V 1 đạt giá trị lớn nhất
Khi đó V 1 = π 3 h 2 2 − h ≤ π 3 . 32 27 = 32 π 81 (khảo sát hàm số f h = 2 h 2 − h 3 ) )
Vậy tỉ số:
V 1 V 2 = 1 : V C V 1 − 1 = 1 : 4 π 3 : 32 π 81 − 1 = 8 19
Chọn C
Lời giải.
Ta có
Suy ra V 1 V 2 lớn nhất khi V V 1 nhỏ nhất => V 1 đạt giá trị lớn nhất.
Gọi h,r lần lượt là chiều cao và bán kính đáy của hình nón nội tiếp mặt cầu.
Gọi I, O lần lượt là tâm của đường tròn đáy hình nón và tâm của mặt cầu.
Gọi A là đỉnh của hình nón. Xét thiết diện qua trục của hình nón như hình vẽ bên.
Xét hàm
Cách 2.
TH1. Chiều cao của khối nón h= R + x và bán kính đáy r 2 = R 2 - x 2
Theo BĐT Cô si cho 3 số dương, ta có
Dấu "=" xảy ra
TH2. Chiều cao của khối nón h = R - x. Làm tương tự.
Đáp án A.
Kí hiệu như hình vẽ.
Ta thấy I K = r ' là bán kính đáy của hình chóp, A I = h là chiều cao của hình chóp.
Tam giác vuông tại K có IK là đường cao
⇒ I K 2 = A I . I M ⇒ r ' 2 = h . 2 r − h
Ta có V c o h p = 1 3 . π r ' 2 . h = 1 3 . π . h . h . 2 r − h = 4 3 π . h 2 . h 2 2 r − h .
Áp dụng bất đẳng thức Cauchy ta có
h 2 . h 2 . 2 r − h ≤ h 2 + h 2 + 2 r − h 3 27 = 8 r 3 27
⇔ V c h o p ≤ 4 3 π . 8 r 3 27 = 32 81 . π r 3
Dấu bằng xảy ra khi h 2 = 2 r − h ⇔ h = 4 r 3 . Vậy ta chọn A