K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

Chọn D.

Giả sử z = a+ bi thì  khi và chỉ khi a = b - 4  (1)

Với a ≠ 0  hoặc b ≠ 1, ta có:

 là số thuần ảo nên a2 - ( b - 1) 2 = 0 khi và chỉ khi a = b - 1 hoặc a = 1 - b

Kết hợp (1)  ta có a = -3/2 và b = 5/2.

Vậy số phức đó là 

18 tháng 7 2019

Chọn B.

 

Giả sử z = x + yi. Theo bài ra ta có: |x + 1 + (y – 2)i| = |x + 3 + (4 – y)i|

hay ( x + 1) 2+ ( y - 2) = ( x + 3) + ( y - 4) 2

suy ra y = x + 5

Số phức

 

w là một số ảo 

Vậy 

24 tháng 6 2021
Đáp án đúng là B nha bn
29 tháng 8 2017

Đáp án C.

24 tháng 6 2021
Đáp án.C.1
27 tháng 7 2019

Đáp án A.

25 tháng 12 2017

Đáp án là B

15 tháng 6 2017

Chọn B

NV
18 tháng 5 2021

Đặt \(z=x+yi\Rightarrow x^2+y^2=2\)

\(\left(z+2i\right)\left(\overline{z}-2\right)=\left(x+\left(y+2\right)i\right)\left(x-2-yi\right)\)

\(=x\left(x-2\right)+y\left(y+2\right)+\left[\left(x-2\right)\left(y+2\right)-xy\right]i\)

\(=x^2+y^2-2x+2y+\left(2x-2y-4\right)i\)

Số phức đã cho thuần ảo khi \(\left\{{}\begin{matrix}x^2+y^2=2\\x^2+y^2-2x+2y=0\\2x-2y-4\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=2\\y=x-1\\x-y-2\ne0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(\dfrac{1+\sqrt{3}}{2};\dfrac{1-\sqrt{3}}{2}\right);\left(\dfrac{1-\sqrt{3}}{2};\dfrac{1+\sqrt{3}}{2}\right)\)

Có 2 số phức thỏa mãn

12 tháng 4 2019

5 tháng 10 2017