K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{A}{B}=\dfrac{8x^3+2x^2-8x-2-3}{4x+1}\)

\(=2x^2-2-\dfrac{3}{4x+1}\)

 

19 tháng 12 2021

Bài 1: 

a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)

\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)

15 tháng 1 2023

đề có sai ko bn

15 tháng 1 2023

\(\dfrac{1}{4}x^2-\dfrac{119}{16}x-\dfrac{627}{64}\) dư \(\dfrac{-4223}{64}\)

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

a) Ta có:

$6x^3+7x^2-4x+m^2-6m+5=3x^2(2x+1)+2x(2x+1)-3(2x+1)+m^2-6m+8$

$=(2x+1)(3x^2+2x-3)+m^2-6m+8=B(3x^2+2x-3)+m^2-6m+8$

Vậy đa thức thương trong phép chia $A$ cho $B$ là $3x^2+2x-3$ và đa thức dư là $m^2-6m+8$

b) Để $A$ chia hết cho $B$ thì đa thức dư $m^2-6m+8=0$

$\Leftrightarrow (m-2)(m-4)=0$

$\Leftrightarrow m=2$ hoặc $m=4$

3 tháng 1 2022

a) Có

6x3+7x2−4x+m2−6m+5=3x2(2x+1)+2x(2x+1)−3(2x+1)+m2−6m+86x3+7x2−4x+m2−6m+5=3x2(2x+1)+2x(2x+1)−3(2x+1)+m2−6m+8

=(2x+1)(3x2+2x−3)+m2−6m+8=B(3x2+2x−3)+m2−6m+8=(2x+1)(3x2+2x−3)+m2−6m+8=B(3x2+2x−3)+m2−6m+8

Vậy đa thức thương trong phép chia AA cho BB là 3x2+2x−33x2+2x−3 và đa thức dư là m2−6m+8

22 tháng 10 2019

2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1

Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)

                              \(\Leftrightarrow a=-1\)

Vậy ...

24 tháng 12 2021

b: \(\dfrac{A\left(x\right)}{B\left(x\right)}=\dfrac{x^4-\dfrac{1}{2}x^3+\dfrac{1}{2}x^3-\dfrac{1}{4}x^2+\dfrac{9}{4}x^2-\dfrac{9}{8}x-\dfrac{15}{8}x+\dfrac{15}{16}+a-\dfrac{1}{16}}{2x-1}\)

Để A(x) chia hết cho B(x) thì a-1/16=0

hay a=1/16

27 tháng 12 2021

a: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

27 tháng 10 2021

1: \(\dfrac{A}{B}=\dfrac{2x^4+4x^3-x^3-2x^2-2x^2-4x+x+2}{x+2}\)

\(=2x^3-x^2-2x+1\)

27 tháng 10 2021

1) \(\dfrac{A}{B}=\dfrac{2x^4+4x^3-x^3-2x^2-4x+x+2}{x+2}\)

=\(2x^3-x^2-2x+1 \)

2) \(2x^3-x^2-2x+1\)

\(\left(2x^3-2x\right)-\left(x^2-1\right)\)

\(2x\left(x^2-1\right)-\left(x^2-1\right)\)

=\(\left(x^2-1\right)\left(2x-1\right)\)

22 tháng 12 2021

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

a: \(\dfrac{A}{B}=\dfrac{x^3+4x^2+3x+12-19}{x+4}=x^2+3+\dfrac{-19}{x+4}\)

b: Để A chia hết cho B thì \(x+4\in\left\{1;-1;19;-19\right\}\)

=>\(x\in\left\{-3;-5;15;-23\right\}\)