Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. Hình chiếu của S lên mặt phẳng (ABC) là trung điểm H của BC. Tính thể tích khối chóp S.ABC biết AB = a, AC = a 3 , SB = a 2 .
A. a 3 6 6
B. a 3 3 2
C. a 3 3 6
D. a 3 6 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có S H ⊥ A B C ⇒ S B ; A B C ^ = S B ; B C ^ = S B C ^ = 60 °
Tam giác SBH vuông tại H, có S H = tan 60 ° . B H = a 3
Và S A B C = 1 2 . A B . A C = a 2 3 2 .
Vậy thể tích khối chóp là V S . A B C D = 1 3 . S H . S A B C = 1 3 a 3 a 2 3 2 = a 3 2
Gọi H, J lần lượt là trung điểm của BC, AC.
Ta có : \(\begin{cases}SH\perp\left(ABC\right)\\HJ\perp AC\end{cases}\) \(\Rightarrow AC\perp SJ\)=> SJH = 60 độ
\(AB=\frac{BC}{\sqrt{2}}=a\sqrt{2};HJ=\frac{AB}{2}=\frac{\sqrt{2a}}{2};SH=HJ.\tan60^o=\frac{a\sqrt{6}}{2}\)
Ta có : \(V_{S.ABC}=\frac{1}{3}SH\frac{AB.AC}{2}=\frac{1}{6}.\frac{\sqrt{6}}{2}.\left(\sqrt{2}\right)^2.a^3=\frac{a^3\sqrt{6}}{6}\)
Gọi E là hình chiếu của H lên SJ, khi đó ta có \(\begin{cases}HE\perp SJ\\HE\perp AC\end{cases}\) \(\Rightarrow HE\perp\left(SAC\right)\)
Mặt khác, do IH SC IH SAC / / (SAC) , suy ra
\(d\left[I,\left(SAC\right)\right]=d\left[H,\left(SAC\right)\right]=HE=HJ.\sin60^o=\frac{\sqrt{6}}{4}a\)
Chọn A
Cách 1:
Dễ thấy hai tam giác SAB và SAC bằng nhau (cạnh chung SA), gọi K là chân đường cao hạ từ A trong tam giác SAB
Từ giả thiết tam giác ABC vuông cân tại B ta được
Trong tam giác ICK vuông tại I có .
Như vậy Ik > IB (vô lý).
TH2: tương tự phần trên ta có
Do nên tam giác BIK vuông tại K và
Như vậy tam giác BKI đồng dạng với tam giác BHS suy ra:
Vậy thể tích của khối chóp S.ABC là
Cách 2: dùng phương pháp tọa độ hóa.
Đáp án là B
Gọi K là trung điểm AB
• H K ⊥ A B S H ⊥ A B ⇒ A B ⊥ ( S H K )
• H M ⊥ S K H M ⊥ A B ⇒ H M ⊥ ( S A B ) ⇒ d [ H ; ( S A B ) ] = H M
• H K = B C 2 = a 3 2 ; H B = A C 2 = a ;
• S H = S B − 2 H B 2 = a ; 1 H M 2 = 1 S H 2 + 1 H K 2 = 1 a 2 + 1 3 a 2 4 = 1 a 2 + 4 3 a 2 = 7 3 a 2
⇒ H M = a 21 7 ⇒ d [ H ; ( S A B ) ] = a 21 7 .
Đáp án C