K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

Đáp án C

24 tháng 6 2017

Chọn C.

10 tháng 6 2018

Đáp án D

19 tháng 9 2019

27 tháng 4 2017

1 tháng 3 2019

Đáp án D

Ta có   S H ⊥ A B C ⇒ S B ; A B C ^ = S B ; B C ^ = S B C ^ = 60 °

Tam giác SBH vuông tại H, có   S H = tan 60 ° . B H = a 3

  S A B C = 1 2 . A B . A C = a 2 3 2 .

Vậy thể tích khối chóp là   V S . A B C D = 1 3 . S H . S A B C = 1 3 a 3 a 2 3 2 = a 3 2

14 tháng 8 2016

Gọi H, J lần lượt là trung điểm của BC, AC.  

Ta có : \(\begin{cases}SH\perp\left(ABC\right)\\HJ\perp AC\end{cases}\) \(\Rightarrow AC\perp SJ\)=> SJH = 60 độ

\(AB=\frac{BC}{\sqrt{2}}=a\sqrt{2};HJ=\frac{AB}{2}=\frac{\sqrt{2a}}{2};SH=HJ.\tan60^o=\frac{a\sqrt{6}}{2}\)

Ta có : \(V_{S.ABC}=\frac{1}{3}SH\frac{AB.AC}{2}=\frac{1}{6}.\frac{\sqrt{6}}{2}.\left(\sqrt{2}\right)^2.a^3=\frac{a^3\sqrt{6}}{6}\)

Gọi E là hình chiếu của H lên SJ, khi đó ta có \(\begin{cases}HE\perp SJ\\HE\perp AC\end{cases}\) \(\Rightarrow HE\perp\left(SAC\right)\)

Mặt khác, do IH SC IH SAC / / (SAC)  , suy ra 

\(d\left[I,\left(SAC\right)\right]=d\left[H,\left(SAC\right)\right]=HE=HJ.\sin60^o=\frac{\sqrt{6}}{4}a\)

14 tháng 8 2016

ok chờ tí

26 tháng 1 2017

Chọn A

Cách 1:

Dễ thấy hai tam giác SAB và SAC bằng nhau (cạnh chung SA), gọi K là chân đường cao hạ từ A trong tam giác SAB

Từ giả thiết tam giác ABC vuông cân tại B ta được 

Trong tam giác ICK vuông tại I .

Như vậy Ik > IB (vô lý).

TH2:  tương tự phần trên ta có 

D nên tam giác BIK vuông tại K và 

 

Như vậy tam giác BKI đồng dạng với tam giác BHS suy ra: 

Vậy thể tích của khối chóp S.ABC là 

Cách 2: dùng phương pháp tọa độ hóa.

7 tháng 3 2017

Đáp án B

Gọi K là trung điểm AB

H K ⊥ A B S H ⊥ A B ⇒ A B ⊥ ( S H K )  

  H M ⊥ S K H M ⊥ A B ⇒ H M ⊥ ( S A B ) ⇒ d [ H ; ( S A B ) ] = H M

H K = B C 2 = a 3 2 ; H B = A C 2 = a ;

• S H = S B − 2 H B 2 = a ;    1 H M 2 = 1 S H 2 + 1 H K 2 = 1 a 2 + 1 3 a 2 4 = 1 a 2 + 4 3 a 2 = 7 3 a 2

⇒ H M = a 21 7 ⇒ d [ H ; ( S A B ) ] = a 21 7 .