K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

Trong S1 có các số chia hết cho các thừa số ở S2

< = > S1 chia hết cho S2

=> ĐPCM 

18 tháng 1 2022

có ai giải được ko 

 

 

18 tháng 1 2022

giúp mình với nhé

 

\(\dfrac{P\left(x\right)}{Q\left(x\right)}=\dfrac{x^{10}+x^5+x^3}{x^2+x+1}\)

\(=\dfrac{x^{10}+x^9+x^8-x^9-x^8-x^7+x^7+x^6+x^5-x^6+x^3}{x^2+x+1}\)

\(=x^8-x^7+x^5-\dfrac{x^3\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}\)

=x^8-x^7+x^5-x^4+x^3

\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

\(=\left(x^2+8x+11\right)^2-16+15=\left(x^2+8x+11\right)^2-1=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)⋮\left(x+6\right)\)

11 tháng 6 2019

\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(\Rightarrow M=x^4+16x^3+86x^2+176x+120\)

\(\Rightarrow M=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(\Rightarrow M=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

Sau khi phân tích đa thức M thành nhân tử, ta thấy: M chứa thừa số x + 6 nên \(M⋮\left(x+6\right)\)

Vậy với mọi \(x\inℕ\)thì\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15⋮\left(x+6\right)\)