chung minh rang trong 2 so tu nhien lien tiep luon co 1 so chia het cho2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai số tự nhiên liên tiếp luôn có một số lẻ và một số chẵn. Mà số chẵn chia hết cho 2 → ĐPCM
b) Gọi số tự nhiên đầu tiên là a + 1, thì 3 số tiếp theo là : a + 2; a + 3 → Luôn có a + 1 hoặc a + 2 hoặc a + 3 chia hết cho 3 → ĐPCM
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
b)goi 3 số tự nhiên la a, a+1, a+2
tổng 3 số la 3a+3 chia hết cho 3
a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
Sai đề rồi bạn : CT rằng trong 3 số tự nhiên liên tiếp chỉ có 1 số chia hết cho 3
Gọi 3 số đó là a ; a + 1 ; a + 2
* ,Với a chia hết cho 3
a + 1 chia 3 dư 1
a + 2 chia 3 dư 2
* , Với a chia cho 3 dư 1
a + 1 chia cho 3 dư 2
a + 2 chia hết cho 3
* , Với a chia cho 3 dư 2
a + 1 chia hết cho 3
a + 2 chia cho 3 dư 1
Do đó trong 2 số tự nhiên liên tiếp chỉ có 1 số chia hết cho 3
tổng 5 chữ sô chữ nhiên liên tiếp vẫn chia hết cho 5 sao mà chứng minh được \(VD:1+2+3+4+5=15⋮5\)
Gọi 3 số tự nhiên liên tiếp là a , b , c
a = x . 3
b = x . 3 + 1
c = x . 3 + 2
Tổng của chúng là x . 3 + x . 3 + 1 + x . 3 + 2 = x . 3 . 3 + 1 + 2 = x . 3 . 3 + 3 = x . 9 + 3
Các số hạng của tổng đều chia hết cho 3
=> x . 9 + 3 chia hết cho 3 <=> tổng của 3 số tự nhiên liên tiếp chia hết cho 3
b ) Tương tự câu đầu
a. Gọi 3 số đó là a , a+1, a+2
Ta có: a+ a+1 + a+2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
a. Gọi 4 số đó là a , a+1, a+2 ,a+4
Ta có: a+ a+1 + a+2 +a+4 = 4a +4
4 chia hết cho 4 => 4a chia hết cho 4
=> 4 a+4 chia hết cho 4
=> Tổng của 4 số tự nhiên liên tiếp luôn chia hết cho 4
ban tren lam sai roi kia vi ho noi khong chia het cho 4 ma
Gọi 3 số tự nhiên liên tiếp là a; a+1; a+2 (a thuộc N)
TH1: a chia hết cho 3 => thỏa mãn
TH2: a chia 3 dư 1 => a có dạng 3k+1 => a+2 sẽ có dạng 3k+1+2=3.(k+1) chia hết cho 3
=> thỏa mãn
TH3: a chia 3 dư 2 => a có dạng 3k+2=> a+1=3k+2+1=3.(k+1) chia hết cho 3
=> Thỏa mãn
Vậy...
2 số đó có dạng a và a +1
Nếu a chẵn thì a chia hết cho 2 (1)
Nếu a lẻ thì a + 1 chẵn => a + 1 chia hết cho 2 (2)
Từ (1) ; (2) => Đpcm