Cho đường thẳng d: y = m x + 3 . Tính góc tạo bởi tia Ox và đường thẳng d biết d đi qua điểm A (3; 0)
A. 120o
B. 150o
C. 60o
D. 90o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=-2 vào y=ax+1, ta được:
a+1=-2
hay a=-3
Vậy: (d'): y=-3x+1
c: Tọa độ giao điểm của (d) và (d') là:
\(\left\{{}\begin{matrix}-3x+1=x+3\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=3-\dfrac{1}{2}=\dfrac{5}{2}\end{matrix}\right.\)
1: Thay x=3 và y=6 vào (d), ta được:
3a+2=6
hay \(a=\dfrac{4}{3}\)
1-4 bạn tk ở đây: Cho đường thẳng y=(m-2)x+m-3(d); m≠2. Tìm m biết:1) tìm m để hàm số đồng biến (tạo Ox góc nhọn), nghịch biến( tạo Ox góc... - Hoc24
5. \(m=1\Leftrightarrow y=-x-2\)
PT giao Ox tại A và Oy tại B của đths: \(\left\{{}\begin{matrix}y=0\Rightarrow x=-2\Rightarrow A\left(-2;0\right)\Rightarrow OA=2\\x=0\Rightarrow y=-2\Rightarrow B\left(0;-2\right)\Rightarrow OB=2\end{matrix}\right.\)
Gọi H là chân đường cao từ O tới đths
Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow OH^2=2\Leftrightarrow OH=\sqrt{2}\)
Vậy k/c từ O đến đt là \(\sqrt{2}\)
Áp dụng PTG: \(AB=\sqrt{OA^2+OB^2}=2\sqrt{2}\)
Vậy \(P_{ABC}=AB+BC+CA=4+2\sqrt{2};S_{ABC}=\dfrac{1}{2}OH\cdot AB=\dfrac{1}{2}\cdot2\sqrt{2}\cdot\sqrt{2}=2\left(đvdt\right)\)
\(1,\) Nhọn \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)
Tù \(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)
\(2,\Leftrightarrow m-2+m-3=2\Leftrightarrow2m-5=2\Leftrightarrow m=\dfrac{7}{2}\)
\(3,\) PT giao Ox tại B và Oy tại C là \(\left\{{}\begin{matrix}y=0\Rightarrow\left(m-2\right)x=3-m\Rightarrow x=\dfrac{3-m}{m-2}\Rightarrow A\left(\dfrac{3-m}{m-2};0\right)\Rightarrow OA=\left|\dfrac{3-m}{m-2}\right|\\x=0\Rightarrow y=m-3\Rightarrow B\left(0;m-3\right)\Rightarrow OB=\left|m-3\right|\end{matrix}\right.\)
(d) tạo với Ox góc 60 độ là góc nhọn \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)
Và \(\tan60^0=\dfrac{OB}{OA}=\left|m-3\right|\cdot\dfrac{\left|m-2\right|}{\left|3-m\right|}=\left|\dfrac{\left(m-3\right)\left(2-m\right)}{m-3}\right|=\left|2-m\right|\)
\(\Leftrightarrow\left|2-m\right|=\sqrt{3}\)
Mà \(m>2\Leftrightarrow2-m< 0\Leftrightarrow2-m=-\sqrt{3}\Leftrightarrow m=2+\sqrt{3}\)
\(4,\) PT hoành độ giao điểm tại hoành độ 3:
\(\left(m-2\right)x+m-3=2x-3\)
Thay \(x=3\Leftrightarrow3m-6+m-3=3\)
\(\Leftrightarrow4m=12\Leftrightarrow m=3\)
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x-1=-x+3\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Thay tọa độ điểm A vào phương trình đường thẳng d ta được: