K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

16 tháng 2 2022

Bạn viết lại đề bài nhé!

15 tháng 5 2021

                      Bài làm :

1) Khi x=9 ; giá trị của A là :

\(A=\frac{\sqrt{9}}{\sqrt{9}+2}=\frac{3}{3+2}=\frac{3}{5}\)

2) Ta có :

\(B=...\)

\(=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1.\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)}\)

\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

3) Ta có :

\(\frac{A}{B}=\frac{\sqrt{x}}{\sqrt{x}+2}\div\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\sqrt{x}}=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\frac{4}{\sqrt{x}+2}\)

Xét :

\(\frac{A}{B}+1=\frac{4}{\sqrt{x+2}}>0\Rightarrow\frac{A}{B}>-1\)

=> Điều phải chứng minh

4 tháng 6 2021

1, thay x=9(TMĐKXĐ) vào A ta đk:

A=\(\dfrac{\sqrt{9}}{\sqrt{9}-2}=3\)

vậy khi x=9 thì A =3

2,với x>0,x≠4 ta đk:

B=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

vậy B=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

3,\(\dfrac{A}{B}>-1\) (x>0,x≠4)

\(\dfrac{\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}}{\sqrt{x}-2}>-1\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}+2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}>-1\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+2}>-1\)

\(\sqrt{x}-2>-1\) (vì \(\sqrt{x}+2>0\))

\(\sqrt{x}>1\)⇔x=1 (TM)

vậy x=1 thì \(\dfrac{A}{B}>-1\) với x>0 và x≠4

18 tháng 4 2023

`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`

Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`

`b)` Với `x >= 0,x ne 4` có:

`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`

`B=[\sqrt{x}-2]/[\sqrt{x}-3]`

`c)` Với `x >= 0,x ne 4` có:

`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`

Có: `C >= 1`

`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`

`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`

`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`

  Vì `x >= 0=>\sqrt{x} >= 0`

  `=>\sqrt{x}-3 > 0`

`<=>x > 9` (t/m đk)

loading...  loading...  

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3            a, Rút gọn A.            b, Tìm các giá trị của x để A = 3Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2            a, Rút gọn biểu thức,            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3            a, Rút gọn biểu thức A.            b, Tính giá trị...
Đọc tiếp

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3

            a, Rút gọn A.

            b, Tìm các giá trị của x để A = 3

Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2

            a, Rút gọn biểu thức,

            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.

Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3

            a, Rút gọn biểu thức A.

            b, Tính giá trị của A khi x=5

            c, Tìm gái trị nguyên của x để biểu thức A có giá trị nguyên.

Bài 4: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) , với x khác 2 .-2

            a, Rút gọn A.

            b, Tính giá trị của A khi x = -4

            c, Tìm các giá trị nguyên của x để A có giá trị là số nguyên.

1

Bài 1: 

a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)

b: Để A=3 thì 3x-9=x+1

=>2x=10

hay x=5

Bài 2: 

a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)

b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;1;5;-1\right\}\)

29 tháng 8 2019

Ta có: P = x − x + 2 ( x + 1 ) ( x − 2 ) − x x ( x − 2 ) : 1 − x 2 − x = x − x + 2 − x ( x + 1 ) ( x + 1 ) ( x − 2 ) . 2 − x 1 − x = 2 − 2 x ( x + 1 ) ( x − 1 ) = 2 ( 1 − x ) ( x + 1 ) ( x − 1 ) = − 2 x + 1