K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

Có  ln ( x + 1 ) = 2 ⇔ x + 1 = e 2

⇔ x = e 2 - 1

Chọn đáp án B.

14 tháng 11 2017

Lần lượt thay x = -2 vào từng bất phương trình:

a) -3x + 2 = -3.(-2) + 2 = 8

Vì 8 > -5 nên x = -2 là nghiệm của bất phương trình -3x + 2 > -5.

b) 10 – 2x = 10 – 2.(-2) = 10 + 4 = 14

Vì 14 > 2 nên x = -2 không phải nghiệm của bất phương trình 10 – 2x < 2.

c) x2 – 5 = (-2)2 – 5 = 4 – 5 = -1

Vì -1 < 1 nên x = -2 là nghiệm của bất phương trình x2 – 5 < 1.

d) |x| = |-2| = 2

Vì 2 < 3 nên x = -2 là nghiệm của bất phương trình |x| < 3.

e) |x| = |-2| = 2

Vì 2 = 2 nên x = -2 không phải nghiệm của bất phương trình |x| > 2.

f) x + 1 = -2 + 1 = -1.

7 – 2x = 7 – 2.(-2) = 7 + 4 = 11

Vì -1 < 11 nên x = -2 không phải nghiệm của bất phương trình x + 1 > 7 – 2x.

NV
9 tháng 1 2023

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=y\ge0\)

\(\Rightarrow4x^2+12xy=27y^2\)

\(\Leftrightarrow\left(2x-3y\right)\left(2x+9y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3y=2x\\9y=-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x+1}=2x\left(x\ge0\right)\\9\sqrt{x+1}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}9\left(x+1\right)=4x^2\left(x\ge0\right)\\81\left(x+1\right)=4x^2\left(x\le0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{81-9\sqrt{97}}{8}\end{matrix}\right.\)

a: A=x1+x2=-5/2

b: \(=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-5}{2}:\left(-1\right)=\dfrac{5}{2}\)

c: \(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(=\left(-\dfrac{5}{2}\right)^3-3\cdot\dfrac{-5}{2}\cdot\left(-1\right)\)

\(=-\dfrac{125}{8}-\dfrac{15}{2}=\dfrac{-185}{8}\)

e: \(E=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(-\dfrac{5}{2}\right)^2-4\cdot\left(-1\right)}=\sqrt{\dfrac{25}{4}+4}=\dfrac{\sqrt{41}}{2}\)

Câu 1.           Cho tập A = {a;b;c;d;e}. Số tập con của A là:A. 28                           B. 30                           C. 32                           D. 34Câu 2.           Nghiệm của phương trình  , x  N  là:A. 8                                         B. 14                           C. 16               D. Vô nghiệmCâu 3.           Hệ só của x6 trong phép khai triển (1 – x2)4  bằng công thức Newton là:A.                               B.                         C....
Đọc tiếp

Câu 1.           Cho tập A = {a;b;c;d;e}. Số tập con của A là:

A. 28                           B. 30                           C. 32                           D. 34

Câu 2.           Nghiệm của phương trình  , x  N  là:

A. 8                                         B. 14                           C. 16               D. Vô nghiệm

Câu 3.           Hệ só của x6 trong phép khai triển (1 – x2)4  bằng công thức Newton là:

A.                               B.                         C.                        D  Một số khác

Câu 4.           Số hạng có chứa y6 trong phép khai triển (x – 2y2)4 là:

A.                         B.                   C.                D.  Một số khác

Câu 5.           Có 4 trai, 3 gái bầu một ban đại diện ba người. Hỏi có bao nhiêu ban đại diện có ít nhất 2 trai?

A.  18                               B. 22                            C.  35                        D.  Một số khác

Câu 6.           Giải phương trình:   

A.   x = 4                         B.   x = 6                      C. x = 5                    D.  Một số khác

Câu 7.           Nếu  = 220 thì  n  bằng:

A. 11                           B.12                            C.13                            D.15

Giùm trả lời ạ xin cảm ơn 

1

Câu 1: C

 

6 tháng 9 2019

a) 3x – y = 2 (1)

⇔ y = 3x – 2.

Vậy phương trình có nghiệm tổng quát là (x; 3x – 2) (x ∈ R).

Đường thẳng biểu diễn tập nghiệm của phương trình (1) là đường thẳng y = 3x – 2 (Hình vẽ).

   + Tại x = 2/3 thì y = 0 ⇒ đường thẳng y = 3x – 2 đi qua điểm (2/3 ; 0).

   + Tại x = 0 thì y = -2 ⇒ đường thẳng y = 3x – 2 đi qua điểm (0; -2).

Vậy đường thẳng y = 3x – 2 là đường thẳng đi qua điểm (2/3 ; 0) và (0; -2).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) x + 5y = 3 (2)

⇔ x = 3 – 5y

Vậy phương trình có nghiệm tổng quát là (3 – 5y; y) (y ∈ R).

Đường thẳng biểu diễn tập nghiệm của (2) là đường thẳng x + 5y = 3.

   + Tại y = 0 thì x = 3 ⇒ Đường thẳng đi qua điểm (3; 0).

   + Tại x = 0 thì y=3/5 ⇒ Đường thẳng đi qua điểm (0; 3/5).

Vậy đường thẳng x + 5y = 3 là đường thẳng đi qua hai điểm (3; 0) và (0; 3/5).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) 4x – 3y = -1

⇔ 3y = 4x + 1

⇔ Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm tổng quát là  (x;4/3x+1/3)(x ∈ R).

Đường thẳng biểu diễn tập nghiệm phương trình là đường thẳng 4x – 3y = -1.

   + Tại x = 0 thì y = 1/3

Đường thẳng đi qua điểm (0;1/3) .

   + Tại y = 0 thì x = -1/4

Đường thẳng đi qua điểm (-1/4;0) .

Vậy đường thẳng 4x – 3y = -1 đi qua (0;1/3) và  (-1/4;0).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) x + 5y = 0

⇔ x = -5y.

Vậy nghiệm tổng quát của phương trình là (-5y; y) (y ∈ R).

Đường thẳng biểu diễn nghiệm của phương trình là đường thẳng x + 5y = 0.

   + Tại x = 0 thì y = 0 ⇒ Đường thẳng đi qua gốc tọa độ.

   + Tại x = 5 thì y = -1 ⇒ Đường thẳng đi qua điểm (5; -1).

Vậy đường thẳng x + 5y = 0 đi qua gốc tọa độ và điểm (5; -1).

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

e) 4x + 0y = -2

⇔ 4x = -2 ⇔ Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Phương trình có nghiệm tổng quát (-0,5; y)(y ∈ R).

Đường thẳng biểu diễn tập nghiệm là đường thẳng x = -0,5 đi qua điểm (-0,5; 0) và song song với trục tung.

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

f) 0x + 2y = 5

Giải bài tập Toán lớp 9 | Giải Toán lớp 9

Phương trình có nghiệm tổng quát (x; 2,5) (x ∈ R).

Đường thẳng biểu diễn tập nghiệm là đường thẳng y = 2,5 đi qua điểm (0; 2,5) và song song với trục hoành.

Giải bài 2 trang 7 SGK Toán 9 Tập 2 | Giải toán lớp 9

13 tháng 5 2019

\(x^2-\left(2m+3\right)x+m^2+3m+2=0\left(1\right).\)

a, Với m = 1, \(\left(1\right)\Leftrightarrow x^2-7m+6=0\Leftrightarrow\left(m-1\right)\left(m-6\right)\Leftrightarrow\orbr{\begin{cases}m=1\\m=6\end{cases}}\)

b, Với x = 2 \(\left(1\right)\Leftrightarrow4-2\left(2m+3\right)+m^2+3m+2=0\)

\(\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)

Với m = 0, \(\left(1\right)\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Với m = 1, \(\left(1\right)\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

c, \(\Delta=4m^2+12m+9-4m^2-12m-8=1>0\)

Vì \(\Delta>0\)nên phương trình có 2 nghiệm phân biệt với mọi m.

13 tháng 5 2019

d, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+3\left(1\right)\\x_1.x_2=m^2+3m+2\left(2\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=1\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(2m+3\right)^2-2\left(m^2+3m+2\right)=1\)

\(\Leftrightarrow4m^2+12m+9-2m^2-6m-4-1=0\)

\(\Leftrightarrow2m^2-6m-4=0\Leftrightarrow m^2-3m-2=0\Leftrightarrow m=\frac{3\pm\sqrt{17}}{2}\)

c, Phương trình có nghiệm này bằng 3 nghiệm kia:\(\Leftrightarrow x_1=3x_2\left(3\right)\)

Kết hợp (1) và (3) ta có hệ : \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1=3x_2\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=\frac{6m+9}{5}\\x_2=\frac{2m+3}{5}\end{cases}}\left(I\right)}\)

Kết hợp (I) và (2) ta được: \(\frac{\left(6m+9\right)\left(2m+3\right)}{25}=m^2+3m+2\)

\(\Leftrightarrow25m^2+75m+50=12m^2+36m^2+27\)

\(\Leftrightarrow13m^2+39m^2+23=0\)

...

Câu 10: Nghiệm của phương trình 2x( x + 1 ) = x2 - 1 là?A. x = - 1. B. x = ± 1.C. x = 1. D. x = 0.Câu 11: Giá trị của m để phương trình ( x + 2 )( x - m ) = 4 có nghiệm x = 2 là?A. m = 1. B. m = ± 1.C. m = 0. D. m = 2.Câu 12: Giá trị của m để phương trình x3 - x2 = x + m có nghiệm x = 0 là?A. m = 1. B. m = - 1.C. m = 0. D. m = ± 1.Câu 13: Giải phương trình: x2 - 5x + 6 = 0A. x = 3 hoặc x = 2B. x= -2 hoặc x = -3C. x = 2 hoặc x = -3D. x = -2 hoặc x = 3Câu...
Đọc tiếp

Câu 10: Nghiệm của phương trình 2x( x + 1 ) = x2 - 1 là?

A. x = - 1. B. x = ± 1.

C. x = 1. D. x = 0.

Câu 11: Giá trị của m để phương trình ( x + 2 )( x - m ) = 4 có nghiệm x = 2 là?

A. m = 1. B. m = ± 1.

C. m = 0. D. m = 2.

Câu 12: Giá trị của m để phương trình x3 - x2 = x + m có nghiệm x = 0 là?

A. m = 1. B. m = - 1.

C. m = 0. D. m = ± 1.

Câu 13: Giải phương trình: x2 - 5x + 6 = 0

A. x = 3 hoặc x = 2

B. x= -2 hoặc x = -3

C. x = 2 hoặc x = -3

D. x = -2 hoặc x = 3

Câu 14: Giải phương trình:

 

 

Câu 15: Giải phương trình: 3(x - 2) + x2 - 4 = 0

A. x = 1 hoặc x = 2

B. x = 2 hoặc x = -5

C. x = 2 hoặc x = - 3

Câu 16: Diện tích hình chữ nhật thay đổi như thế nào nếu chiều rộng tăng 4 lần, chiều dài giảm 2 lần ?

A. Diện tích không đổi.

B. Diện tích giảm 2 lần.

C. Diện tích tăng 2 lần.

D. Cả đáp án A, B, C đều sai.

Câu 17: Cho hình chữ nhật có chiều dài là 4 cm, chiều rộng là 1,5 cm. Diện tích của hình chữ nhật đó là ?

A. 5( cm ) B. 6( cm2 )

C. 6( cm ) D. 5( cm2 )

Câu 18: Cho hình vuông có độ dài cạnh hình vuông là 4 cm. Diện tích của hình vuông đó là?

A. 8( cm ). B. 16( cm )

C. 8( cm2 ) D. 16( cm2 )

Câu 19: Cho tam giác vuông, có độ dài hai cạnh góc vuông lần lượt là 6cm, 4cm. Diện tích của tam giác vuông đó là ?

A. 24( cm2 ) B. 14( cm2 )

C. 12( cm2 ) D. 10( cm2 )

Câu 20: Cho hình vuông có đường chéo là 6( dm ) thì diện tích là ?

A. 12( cm2 ) B. 18( cm2 )

C. 20( cm2 ) D. 24( cm2 )

Câu 21:Tam giác có độ dài cạnh đáy bằng a , độ dài đường cao là h. Khi đó diện tích tam giác được tính bằng công thức ?

A. a.h B. 1/3ah

C. 1/2ah D. 2ah

 

 

1

Câu 10: A

Câu 11: A

Câu 12: C

Câu 13: A

Câu 15: B

Câu 16: C

Câu 17: B

Câu 18: D