Cho tam giác ABC vuông tại A , AB = 6 , AC = 8 . Quay hình tam giác ABC xung quanh trục BC ta được một khối tròn xoay có thể tích là
A. 96 3 π
B. 96 π
C. 384 5 π
D. 1152 5 π
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi quay tam giác theo BC ta sẽ có được hai khối nón như hình vẽ.
Trong △ A B C , gọi là H chân đường cao của A đến BC. Ta có:
Thể tích hình nón đỉnh C là:
Thể tích hình nón đỉnh B là:
Khối tròn xoay có thể tích:
Đáp án C
Khi quay tam giác theo BC ta sẽ có được hai khối nón như hình vẽ.
Trong ∆ A B C , gọi là H chân đường cao của A đến BC. Ta có
Chọn C.
Phương pháp:
Dựng hình, xác định các hình tròn xoay tạo thành khi quay và tính tỉ số thể tích.
Cách giải:
Đáp án A
Khi quay hình tam giác đó xung quanh đường thẳng AB một góc 3600 ta được một khối nón tròn xoay có đỉnh A, đường cao AB, bán kính đáy R = BC.
Kết luận V = 1 3 . π . BC 2 . AB = πa 3
Vì B A C ^ = 90 o nên BC = 5. Khi đó
S 1 S 2 = π . 4 . 5 π . 3 . 5 = 4 3
Đáp án A
Đáp án C
Khi quay tam giác theo BC ta sẽ có được hai khối nón như hình vẽ.
Trong ΔABC, gọi H là chân đường cao của A đến BC. Ta có