K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.

 

19 tháng 4 2022

23 tháng 12 2020

uses crt;

var a,m,i:integer;

s:real;

begin

clrscr;

write('Nhap a='); readln(a);

write('Nhap m='); readln(m);

s:=1;

for i:=1 to m do 

  s:=s+1/sqr(a+i);

writeln(s:4:2);

readln;

end.

22 tháng 12 2021
1+1=3--3+3=9--9+1=5
DD
4 tháng 3 2022

\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+20}\)

\(=\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{20\times21}\)

\(=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{20\times21}\right)\)

\(=2\times\left(\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+...+\frac{21-20}{20\times21}\right)\)

\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{20}-\frac{1}{21}\right)\)

\(=2\times\left(\frac{1}{2}-\frac{1}{21}\right)\)

\(=\frac{19}{21}\)

7 tháng 2 2016

Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có 
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n) 
Do đó 
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20) 
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20) 
=1+3/2 +4/2 +5/2 +... +21/2 
=(2+3+4+5+...+20)/2=104,5 . TICH CHON MINH NHA CAC BAN THI CA NAM SE GAP NHIEU DIEU MAY MAN DAY

7 tháng 2 2016

Xét số hạng tổng quát thứ n (n nguyên và n>1), ta có 
1/n(1+2+...+n)=[n(n+1)/2]/n= [n(n+1)]/(2n) 
Do đó 
B = 1 + 1/2 (1 + 2) + 1/3 (1 + 2 + 3) + 1/4 (1 + 2 + 3 +4) + ...+ 1/20 (1 + 2 +... + 20) 
=1 +[2(2+1)]/(2.2) +[3(3+1)]/(2.3) +[4(4+1)]/(2.4) +... +[20(20+1)]/(2.20) 
=1+3/2 +4/2 +5/2 +... +21/2 
=(2+3+4+5+...+20)/2=104,5