K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

+ Xác định góc của SC với (SAD).

Hạ CE ⊥ AD, ta có E là trung điểm AD và CE ⊥ (SAD) nên ∠(CSE) = 30 o .

∠(CSE) cũng chính là góc giữa SC và mp(SAD).

Trong ΔCSE, ta có:

S E   =   C E . tan 60 o   =   a 3   ⇒   S A   =   S E 2 -   A E 2   =   3 a 2   -   a 2   =   a 2 .

Nhận xét

Gọi M, N lần lượt là trung điểm của AB và AE.

Ta có MN // BE nên MN // CD. Như vậy MN // (SCD). Ta suy ra

d(M,(SCD)) = d(N,(SCD)).

Mà DN/DA = 3/4 nên d(N,(SCD)) = 3/4 d(A,(SCD))

+ Xác định khoảng cách từ A đến (SCD).

Vì vậy tam giác ACD vuông cân tại C nên CD vuông góc với AC.

CD ⊥ AC & CD ⊥ SA ⇒ CD ⊥ (SAC) ⇒ (SCD) ⊥ (SAC).

Hạ AH ⊥ SC, ta có AH ⊥ (SCD).

23 tháng 8 2019

Chọn B

Chứng minh được ∆ S A D  vuông cân tại A và ∆ A B D  vuông tại D.

Khi đó d G , S B D = 1 3 d A , S B D = a 2 6 .

18 tháng 2 2019

26 tháng 4 2018

Đáp án C.

27 tháng 4 2022

0

21 tháng 4 2023

loading...  

NV
19 tháng 3 2021

Gọi M là trung điểm AB \(\Rightarrow AM=a\Rightarrow ADCM\) là hình vuông

\(\Rightarrow CM\perp AB\Rightarrow CM\perp\left(SAB\right)\)

\(\Rightarrow\widehat{CSM}\) là góc giữa SC và (SAB)

\(SM=\sqrt{SA^2+AM^2}=\sqrt{a^2+a^2}=a\sqrt{2}\)

\(tan\widehat{CSM}=\dfrac{CM}{SM}=\dfrac{a}{a\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow\widehat{CSM}\approx35^015'\)

22 tháng 3 2018

26 tháng 9 2018

Đáp án C.

Ta có SAD là tam giác đều nên S H ⊥ A D  

Mặt khác S A D ⊥ A B C D ⇒ S H ⊥ A B C D .  

Dựng  B E ⊥ H C ,

do B E ⊥ S H ⇒ B E ⊥ S H C  

Do đó d = B E = 2 a 6 ; S H = a 3 ; A D = 2 a  

Do S C = a 15 ⇒ H C = S C 2 − S H 2 = 2 a 3 .  

Do S A H B + S C H D = 1 2 a A B + C D = S A B C D 2  

suy ra  V S . A B C D = 2 V S . H B C = 2 3 . S H . S B C H

= 3 2 a 3 . B E . C H 2 = 4 a 3 6 .

23 tháng 4 2017