\(x< 9\frac{1}{2}\)\(-\frac{11}{3}< y\)vậy đề là...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 3 chưa đọc, nhưng cả cách 1 lẫn cách 2 đều sai. Sai lầm là ko chú ý điều kiện \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow\left|t\right|\ge2\)
\(P=\frac{x^2}{y^2}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)=t^2-3t-2\)
- Nếu \(t\le-2\Rightarrow P=\left(t+2\right)\left(t-5\right)+8\ge8\)
- Nếu \(t\ge2\Rightarrow P=\left(t-2\right)\left(t-1\right)-4\ge-4\)
So sánh 2 trường hợp ta kết luận được \(P_{min}=-4\) khi \(t=2\) hay \(x=y\)
Bài 3:
\(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{3\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{1\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{4}\right)}=\dfrac{2}{3}+\dfrac{1}{3}=1\)
Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ
sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)
giải
Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:
\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)
\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)
Áp dụng bđt bunhiacopxki ta có:
\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)
Mà \(x,y,z\)nguyên dương
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)
Lấy (1) + (2) ta được:
\(M\ge2+2+2+\frac{1}{3}\)
\(\Rightarrow M\ge\frac{19}{3}\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z\)
dễ ợt mà
đề bài là j